Lecture 31 (12/07/20)		Carbohydrates			
TODAY		A. L B. F	Jet Rol	es	
•Reading:	Chs4,6,8,10,14,16,17,18; 128-129,	C. N	No	nosaccharides	
•Problems:	189,311,377-380,555-557,561,621-622,639,662-663,679 691-694	,	1.	Chirality a. One or more asymmetric carbons	
Problems.	-		2	D. Linear and ring forms	
NEXT (LAST	-ii)		۷.	carbohydrates	
•Reading:	Ch13; 497-501, 507-514		3.	Polymerization a. The Glycosidic Bond	
•Problems:	Ch13 (text); 5,6,9,10,22,24	D. (Olig	gosaccharides	
	Ch7 (study-guide: applying); 4		1.	Glycoproteins & glycolipids	
	Ch7 (study-guide: facts); 1-4,10-12		2.	O-linked	
			3. 4	Sequence determination-ABO	
		E. F	Pol	vsaccharides	
•Additional Office hours – Thursday (12/10) & Wednesday (12/16) at 10:00-11 am		:	1. 2.	Polymers of glucose Polymers of disaccharides	
•Review session – next Monday 2-3 PM SCI109		Vita	am A.	Nins & Cofactors Water soluble	
•Final Exam – Th	nursday <mark>8</mark> -11 AM in LAW	Me	tał	polism	

Polysaccharides

Carbohydrates

Polysaccharides

- The majority of natural carbohydrates are usually found as large polymers.
- These polysaccharides can be:
 - homopolysaccharides (one monomer unit)
 - heteropolysaccharides (multiple monomer units)
 - linear (one type of glycosidic bond)
 - branched (multiple types of glycosidic bonds)
- Polysaccharides do not have a defined molecular weight.
 - This is in contrast to proteins because, unlike proteins, no template is used to make polysaccharides.
 - Polysaccharides are often in a state of flux; monomer units are added and removed as needed by the organism.

Polysaccharides: Polymers of Disaccharides First, need to describe the Extracellular Matrix (ECM)

- · Material outside the cell
- · Strength, elasticity, and physical barrier in tissues (varies tremendously)
- Main components

 proteoglycans
 collagen & elastin fibers

 Proteoglycans

 Different glycosaminoglycans are O-linked to the "core protein."
 Linkage from anomeric carbon of xylose to serine hydroxyl
 Our tissues have many different core proteins; aggrecan is the best studied.

Polysaccharides: Polymers of Disaccharides Glycosaminoglycans

(the carbohydrate part of proteoglycans)

- Linear polymers of repeating disaccharide units (sugarX-sugarY)_n
 - One monomer (sugarX) is either sugar acid or Gal
 - uronic acids (C6 oxidation)
 - Most have sulfate esters
- One monomer (sugarY) is either:
 - N-acetyl-glucosamine (GlcNAc) or N-acetyl-galactosamine (GalNAc)
 - Also sulfate esters
- Extended hydrated molecule
 - Negatively charged
 - minimizes charge repulsion
- Forms meshwork with fibrous proteins to form extracellular matrix
 - connective tissuelubrication of joints
- Form huge (M_r > 2 10⁸) noncovalent aggregates (Hyaluronan and Aggrecan).
 - They hold a lot of water (1000× its weight) and provide lubrication.
 - Very low friction material
 - Covers joint surfaces: articular cartilage
 - reduced friction & load balancing

Polysaccharides: Polymers of Disaccharides Glycosaminoglycans

	Usual molecular weight of poly- saccharide chain	Component sugars	Location of sulfate	Linkage	Major Source
Hyaluronic acid ^a	1 - 3 x 10 ⁶	N-acetylglucosamine glucuronic acid	•	β-(1+4) β-(1+3)	synovial fluid. vitreous humor of the eye, umbilical cord, cock's comb
Chondroitin 4-sulfate (chondroitin sulfate A)	2 - 5 x 104	N-acetylgalactosamine glucuronic acid	4	β-(1+4) β-(1+3)	human cartilage, aorta
Chondroitin 6-sulfate (chondroitin sulfate C)	2 - 5 x 10 ⁴	N-acetylgalactosamine glucuronic acid	6	8-(1+4) 8-(1+3)	heart valves
Dermatan sulfate (chondroitin sulfate B)	2 - 5 x 10 ⁴	N-acetylgalactosamine iduronic acid glucuronic acid	4	$\beta - (1+4)$ $\alpha - (1+3)^{b}$ $\beta - (1+3)$	skin, blood vessels, heart valves
Heparin	1 - 3 x 10 ⁴	glucosamine glucuronic acid iduronic acid	3,6,N 2	a-(1+4) B-(1+4), a-(1+4) ^b	lung, mast cells
Heparan sulfate (heparitin sulfate)	$2 - 10 \times 10^3$	glucosamine N-acetylglucosamine glucuronic acid iduronic acid	N ? 3,6 2	α-(1+4) β-(1+4)	blood vessels, cell surfaces
Meratan sulfate	$5 - 20 \times 10^3$	N-acetylglucosamine galactose	6	B-(1+3) B-(1+4)	cornea of the eye, nucleus pulposus, cartilage

^aThe attachment of hyaluronic acid to protein has not been demonstrated unequivocally.

bThis linkage of L-iduronic acid, identical to the 8-linkage of D-glucuronic acid. However, iduronic acid is of the L rather than D configuration, which results in this bond being designated as a rather than 8.

Primer	Type ^a	Repeating unit ^b	Size (number of monosaccharide units)	Roles/significance
Starch				Energy storage: in plants
Amylose Amylopectin	Homo- Homo-	$(\alpha 1 \rightarrow S4)$ Glc, linear $(\alpha 1 \rightarrow S4)$ Glc, with $(\alpha 1 \rightarrow S6)$ Glc branches every 24–30 residues	50–5,000 Up to 10 ⁶	
Glycogen	Homo-	$(\alpha 1 \rightarrow S4)$ Glc, with $(\alpha 1 \rightarrow S6)$ Glc branches every 8–12 residues	Up to 50,000	Energy storage: in bacteria and animal c
Cellulose	Homo-	(β1 → S4) Glc	Up to 15,000	Structural: in plants, gives rigidity and strength to cell walls
Chitin	Homo-	(β1 → S4) GlcNAc	Very large	Structural: in insects, spiders, crustacean gives rigidity and strength to exoskeletor
Peptidoglycan	Hetero-; peptides attached	4)Mur2Ac(β1 → S4) GlcNAc(β1	Very large	Structural: in bacteria, gives rigidity and strength to cell envelope
Hyaiuronan (a glycosaminoglycan)	Hetero-; acidic	4)GICA (β1 → 83) GICNAC(β1	Up to 100,000	structural: in vertebrates, extracellular n of skin and connective tissue; viscosity a lubrication in joints