| Lecture 22 (11/6/20)          |                                                          | Nucleic Acids      |  |  |
|-------------------------------|----------------------------------------------------------|--------------------|--|--|
| •Reading:                     | Ch8; 285-290                                             | A Nucleotidee      |  |  |
|                               | Ch24; 963-978                                            | A. NUCLEOLIGES     |  |  |
|                               |                                                          | B. Nucleic Acids   |  |  |
| <ul> <li>Problems:</li> </ul> | Ch8 (text); 9                                            | C Tho 1 S's        |  |  |
|                               | Ch8 (study-guide: facts); 3                              | 0.1116435          |  |  |
|                               | Ch24 (text); 5,7,9,10,14,16                              | 1. Size            |  |  |
|                               | Ch24 (study-guide: applying); 1                          | 2. Solubility      |  |  |
|                               | Ch24 (study-guide: facts); 1,2,4                         | 3. Shape           |  |  |
| NEXT                          |                                                          | a. B-DNA           |  |  |
|                               |                                                          | b. A-DNA           |  |  |
| • Reading:                    | Ch1; 29-34                                               | c. Z-DNA           |  |  |
|                               | Ch8; 295-299                                             | d. Iopology        |  |  |
|                               | Ch9; 319-325, 346                                        | I. Packaging       |  |  |
| Duchlasses                    |                                                          | iii Topoisomerases |  |  |
| • Problems:                   | Ch8 (text); 6,7,8,10<br>Ch8 (study guide: applying): 1.2 | 4. Stability       |  |  |
|                               | Ch8 (study-guide: facts); 10,11                          | a. Nucleotides     |  |  |
|                               | Ch9 (text); 1,2,3,4                                      | i. Tautomers       |  |  |
|                               | Ch9 (study-guide: facts); 1,2,3,4,5                      | ii. Acid/base      |  |  |
|                               | Ch24 (study-guide: facts); 3,5,6                         | b. Nucleic Acids   |  |  |
|                               | Ch26 (text); 3                                           | i. Chemistry       |  |  |
|                               | Ch26 (study-guide: applying); 2,3                        | II. Denaturation   |  |  |
|                               |                                                          | iv Nucleases       |  |  |

















| В               |
|-----------------|
| Right handed    |
| ~20 Å           |
| 10              |
| 36°             |
| 34Å             |
| 3.4 Å           |
| 6°              |
| Wide and deep   |
| Narrow and deep |
| C2'-endo A-DNA  |
| Anti            |
|                 |



#### **Nucleic Acids: Shape** Structural Features of A-, B-, & Z-DNA

#### TABLE 24-1 Structural Features of Ideal A-, B-, and Z-DNA

|                                    | A                   | В                   | z                                                                  |
|------------------------------------|---------------------|---------------------|--------------------------------------------------------------------|
| Helical sense                      | <b>Right handed</b> | <b>Right handed</b> | Left handed                                                        |
| Diameter                           | ~26 Å               | ~20 Å               | ~18 Å                                                              |
| Base pairs per helical turn        | 11                  | 10                  | 12 (6 dimers)                                                      |
| Helical twist per base pair        | 31°                 | 36°                 | 9° for pyrimidine–purine steps;<br>51° for purine–pyrimidine steps |
| Helix pitch (rise per turn)        | 29 Å                | 34 Å                | 44 Å                                                               |
| Helix rise per base pair           | 2.6 Å               | 3.4 Å               | 7.4 Å per dimer                                                    |
| Base tilt normal to the helix axis | 20°                 | 6°                  | 7°                                                                 |
| Major groove                       | Narrow and deep     | Wide and deep       | Flat                                                               |
| Minor groove                       | Wide and shallow    | Narrow and deep     | Narrow and deep                                                    |
| Sugar pucker                       | C3'-endo            | C2'-endo            | C2'-endo for pyrimidines; C3'-endo for purines                     |
| Glycosidic bond conformation       | Anti                | Anti                | Anti for pyrimidines; syn for purines                              |





# **Nucleic Acids: Shape** Nucleotide Sugar Conformations



### Nucleic Acids: Global Shape Metaphase Chromosome

How do we get something that is 2-10 cm long into one of these, which is only 10  $\mu$ m (10,000x)?







#### Nucleic Acids: Global Shape Histones Are Highly Conserved

| Histone | Number of<br>Residues | Mass<br>(kD) | % Arg | % Lys |
|---------|-----------------------|--------------|-------|-------|
| H1      | 215                   | 23.0         | 1     | 29    |
| H2A     | 129                   | 14.0         | 9     | 11    |
| H2B     | 125                   | 13.8         | 6     | 16    |
| H3      | 135                   | 15.3         | 13    | 10    |
| H4      | 102                   | 11.3         | 14    | 11    |







#### Nucleic Acids: Global Shape Histone-Depleted Chromosome













## **Nucleic Acids: Global Shape**

Consequences of supercoiling:

- 1) Required for information retrieval; must be negative
- 2) All circular extra-chromosomal DNAs are negatively supercoiled
- 3) Can be used for isolation of these DNAs in the laboratory











