

9

Cooperativity: Hill coefficient

$$H_b + n O_2 \xrightarrow{} H_b(O_2)_n$$

- Positive cooperativity: n > 1
- Negative cooperativity: n < 1
- Non-cooperative: n = 1
- Theoretical maximum cooperativity = # of binding sites

Oxygen triggers Hb to switch from its low affinity (T) state to its high affinity (R) state. What kind of allosteric effector is oxygen for Hb? What kind of allosteric effector is BPG for Hb?

- A. Heterotropic positive allosteric effector
- B. Homotropic negative allosteric effector
- C. Heterotropic negative allosteric effector
- D. Homotropic positive allosteric effector

Oxygen-Binding affects Bonds to C-terminus

• Hemoglobin Dynamics at C-term of beta-subunit

See:

- O₂ binds
- The salt-bridge between His-146 and Asp-94 on the same $\beta\mbox{-subunit}$ breaks
- The salt-bridge between the C-term carboxylate of β -subunit loses contact with Lys-40 of α -subunit $$^{(b)\beta\,\text{Chains}}$$
- "Anchor" is lost and subunits move

DON'T See:

- Fe moving into plane of heme when O₂ binds
- Helix F and FG loop moving when His-91 (F8) on helix-F moves
- H-bond with Tyr-145 on and Val-98 (on FG loop) on β -subunit breaking \checkmark
- NONE of the comparable changes at the C-term of the α -subunit, due to binding the β -subunit
- E.g., the H-bond between the Asp-99 of β -subunit and Tyr-42 of α -subunit breaking

<u>The T- and R- states of Hb</u>

Protein Stability, Folding, and Dynamics	
D < N	
(denatu	ired) (native)
What is the equilibrium? Lies to the right Therefore, ΔG is negative	
What forces operate? Non covalent: H-bonds? Ionic (salt-bridges)? van der Waals? Hydrophobic? Covalent:	yes, definitely, but those with water in D-state yes, but not that many and non specific yes, but not a driving force until there is compaction YES, bury hydrophobic residues
Disulfide bonds? Which force(s) are the most Hydrophobic!	yes, but most proteins don't have any t important?

