EN	ZYMES: Binding & Catalysis	Lastura 16 $(10/20/23)$
А	Binding • Reading: Ch6: 181-186, 195-196	10(10/20/23)
R	• Homework #16	1. Inhibition
0.	• Reading: Ch6; 203-208	a. Irreversible: protein modification
U.	Catalucia Ch12; 413-415	b. Reversible
D.	Homework #17	i. Competitive; like substrate; Km affected
	1. Transition State Theory	by $(1 + [I]/K_I) = \alpha$
	2. <u>Catalytic</u> strategies (<u>What</u>)	ii. Uncompetitive; binds only ES; both Km
	3. <u>Mechanistic</u> strategies (<u>How</u>)	and Vmax affected in opposite ways
E.	Quantifying the Catalytic Power: Kinetics	mixed pop-equal binding): Vmax
	1. Review	affected
	2. Enzyme Kinetics	iv. Mixed inhibition if I binds E differently
	3. Rate vs. [S] for enzyme catalyzed reaction;	than it binds ES
	initial rate (v_0)	E Active-site identification
	4. ES complex	Determine mechanism-distinguish ping-pong
	a. Reaction	a. Determine mechanism-distinguism ping-pong
	i. Binding reaction	h nH studios: do ionizations match amino acid
	ii. Catalytic reaction	pristudies, do forizations match amino actu pK 's when looking at pH ve activity?
	b. Meaning of rate curve: hyperbolic curve	c Protein modification: Irreversible
	5. Rate expression; Michaelis-Menten	d X-ray crystallography structure: cleft
	Kinetics (M-M)	complexes with ligands (inhibitors or
	a. Assumptions	substrates)
	b. M-M equation derivation	E Enorgation of Catalysis
	6. Meaning of rate expression (M-M eqn)	
	a. [S] = Km	a. The $\Delta\Delta G^+$ is negative
	b. [S] >> Km	b. The $\Delta\Delta G^{+} = \Delta\Delta H^{+} + I \Delta\Delta S^{+}$, boliding effects a
	c. [S] << Km	proximity/position effects
	7. Collection and manipulation of data	d Example of enzyme:
	a. Lineweaver-Burk; double reciprocal; 1/vo vs. 1/[S]	L. Proline Bacemase
	 b. Eadle-Hotstee; vo vs. vo/[S] c. Hanes-Woolf; [S]/vo vs. 1/[S] 	 HIV protease; tetrahedral t.s. seen in two nM inhibitors (Kr < 1 nM); bioavailability

Enzymes			
3) Use protein modification to determine what residues might be <u>AT</u> the active site			
If you react your enzyme with chemical reagents that are specific to certain amino acid residues, and these residues are at the active site, you might abolish activity. Certain controls are usually required: make sure that reagent doesn't just denature the enzyme test to see if substrates or competitive inhibitors will protect should measure stoichiometry of reaction Common Reagents for the Modification of Proteins			
Reagent Residue Detection			
2-hydroxy-5-nitrobenzyl bromide Tryptophan 410 nm (Koshland's reagent)			
N-bromosuccinimide Tryptophan 260/280 nm			
Phenylisothiocyante (Edman's Reagent) Amino-terminal Release of a PTH-amino acid			
Iodoacetic acid Cysteine Carboxylmethyl derivatives			
N-ethylmaleimide (NEM) Cysteine Derivatives of NEM			
5,5'-Dithiobis(2-nitrobenzoic acid) (Ellman's Cysteine 412 nm Reagent - DTNB)			
Diethylpyrocarbonate (DEPC) Histidine 240 nm			
Imidates Lysine Derivatives of imidates			
2,4,6-trinitrobenzenesulfonic acid (TNBS) Lysine 420 nm			
How can you use this idea and identify WHICH of the many His, Cys, Lys, etc. might be the one at the active site?			

