The effects of normal aging on myelinated nerve fibers in monkey central nervous system

Alan Peters*

Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA

Edited by:
Kathleen S. Rockland, RIKEN Brain Science Institute, Japan

Reviewed by:
George Hetzog, UCLA, USA
Malin Höistad, Mount Sinai School of Medicine, USA

*Correspondence:
Alan Peters, Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
e-mail: alan@bu.edu

INTRODUCTION

There are two types of nerve fibers in the central nervous system, myelinated and unmyelinated ones. The myelinated nerve fibers are axons of neurons that are ensheathed by internodal lengths of myelin formed by oligodendrocytes. Developmentally, the internodal lengths of myelin are produced at the ends of processes of oligodendrocytes and each internode is generated by a spiral wrapping of a paired sheet of oligodendrocytic plasma membrane. Initially the successive turns of the spiral of paired membrane sheets are separated by cytoplasm, but eventually the cytoplasm is extruded from between the turns. As a result, mature, compact myelin is formed. At the ends of each internodal length of myelin are regions called paranodes, and here are the nuclei of the spiral wraps of myelin membrane successively terminate, the innermost one terminating first (Figure 1). As the turns of myelin terminate the sheath gradually becomes thinner, and eventually end at the nodes of Ranvier, which separate the successive internodal lengths of myelin. At the nodes the axon is bare, but is characterized by a dense undercoating.

An oligodendrocyte forms several internodal lengths of myelin, each one on a different axon, and in general the larger the diameter of the axon, the thicker is its myelin sheath and the longer its internodes and its paranodes (see Figure 1). And since there seems to be some limit to the amount of myelin an individual oligodendrocyte can produce and maintain, oligodendrocytes that myelinate small diameter axons form more internodal lengths of myelin than those that myelinate larger diameter axons. Myelin contains lipoproteins, so that in unfixed brains the myelin sheaths have a white sheen. Consequently, tracts of the central nervous system that contain mostly myelinated nerve fibers and few neurons are referred to as white matter. In contrast, gray matter contains the cell bodies and dendrites of neurons and fewer myelinated nerve fibers.

Our studies have been concerned with the effects of age on myelinated nerve fibers in the central nervous system of a non-human primate, the rhesus monkey (Macaca mulatta). The rhesus monkey offers an excellent model in which to examine the effects of normal aging on the brain, because unlike humans, rhesus monkeys do not develop neurofibrillary tangles are not subject to the dementia that characterizes Alzheimer's disease. In humans the existence of this disease makes it difficult to study the effects of normal aging, because it is often a problem to determine if older individuals are really normal, since they may have the beginning of Alzheimer's disease, which is characterized morphologically by the presence of both senile plaques and neurofibrillary tangles that cause neurons to die. Indeed, recent studies have shown some cognitively intact persons can have substantial numbers of plaques and tangles in their brains (e.g., Bennett, 2006; Silver et al., 2002). Added difficulties in determining which of the morphological aging changes that occur in the human brain are responsible for normal cognitive decline, is that most older people have not been behaviorally tested before their brains become available for examination, so that their real cognitive status is usually not known. And even when a brain...
becomes available for examination, the delay in fixing the tissue usually leaves the structural preservation less than optimal.

Rhesus monkeys live for a maximum of 35 years (Tigges et al., 1988) and the advantage is that they are not subject to Alzheimer’s disease, and overall, do not lose significant numbers of neurons from their cerebral cortex with age (see Merrill et al., 1998; Morrison and Hof, 1997; Peters et al., 1998). However, Smith et al. (2004) have recently claimed that there may be a focal loss of neurons from cortical area 8A of the prefrontal cortex. None of the neurons in the aging monkey cortex acquire neurofibrillary tangles, and although some senile plaques may be present, particularly in the frontal and primary somatosensory cortices of older monkeys, they are few in number (Heilbronner and Kemper, 1990; Struble et al., 1985). The small numbers of plaques do increase with age in monkeys, but there is no correlation between plaque burden and cognitive decline (Sloan et al., 1997). The other advantage of using monkeys to study normal cognitive decline is that over the entire range of their life span, monkeys can be behaviorally tested to determine their cognitive status, and in our studies their cognitive status is defined by a cognitive impairment index (CII). Their brains can then be properly prepared for morphological, physiological or biochemical analyses.

The first hint that there are age-related changes in myelinated nerve fibers came from the observation that in old humans and monkeys there is a decrease in the intensity of haemotoxylin staining of white matter (e.g., Kemper, 1994; Lutti and Braak, 1983). The underlying reason for this increased myelin staining pallor is still not clear, but it is now known that there are a number of age-related alterations in myelinated nerve fibers in the primate central nervous system, such as a loss of some myelinated nerve fibers and alterations in the morphology and composition of myelin sheaths, that could account for the decrease in staining intensity. Some of these alterations will be considered in the next sections, which will concentrate primarily on age changes that have been encountered in non-human primates. The correlations that occur between age-related morphological changes in myelinated nerve fibers and cognitive decline will also be considered.

LOSS OF MYELINATED NERVE FIBERS

Magnetic resonance imaging (MRI) studies of both human (e.g., Albert, 1993; Guttman et al., 1998) and monkey (Lai et al., 1995; Wisco et al., 2008) brains have shown there is a loss of white matter from the cerebral hemispheres with age. For example, Wisco et al. (2008) calculate that in rhesus monkeys there is a 11.5% loss of white matter from the forebrain with age, in contrast to only a 2% loss of gray matter. However, it should be noted that other studies on humans (e.g., Pfefferbaum et al., 1994; Beaniek et al., 2003; Sullivan et al., 2004) and monkeys (Andersen et al., 1998) suggest that loss of volume of the hemispheres is mainly due to a thinning of the cerebral cortex. Nevertheless, there seems to be general agreement that there is some loss of white matter with age and this is supported by stereological studies on cognitively normal human brains. The first of these studies was that of Pakkenberg and Gundersen (1997) who examined brains from humans between 20 and 95 years of age, and using the Cavalieri’s principle they determined volume changes. They concluded there was a 28% decline in the volume of white matter from the cerebral hemispheres. In another study from this same laboratory, Yang et al. (1997) using light and electron microscopy concluded that this loss is due to a 27% overall loss in the lengths of myelinated nerve fibers from white matter. Later
Marner et al. (2003) extended these studies by examining samples that were taken systematically and randomly from the white matter of 36 normal brains of males and females aged between 18 and 93 years. They concluded that though the overall loss of white matter from the human cerebral hemispheres is 23%, the overall decrease in total myelinated nerve fiber length is even greater, being 45%. A similar loss of myelinated nerve fibers from the human brain has been reported by Meier-Ruge et al. (1992), who examined the brains of cognitively normal humans and concluded there is a 16% loss of myelinated nerve fibers from white matter of the precentral gyrus and an 11% loss from the corpus callosum.

Studies of the effects of age on the monkey brain support the contention that there is a loss of myelinated nerve fibers with age. In each of the white matter tracts we have examined some loss of myelinated nerve fibers has been found. Over the life span of the monkey the average number of myelinated nerve fibers lost from the optic nerve (Sandell and Peters, 2001), and from the anterior commissure (Sandell and Peters, 2003) is about 45%, while from the fornix and the splenium of the corpus callosum (unpublished data), the loss is about 25%. In all four structures the correlations between the decreasing numbers of myelinated nerve fibers and increasing age are significant.

In contrast, there is no measurable loss of myelinated nerve fibers from the visual cortex (Nielsen and Peters, 2000), but the inability to detect a loss may be due to the relatively sparse numbers of myelinated nerve fibers present in cortex. Because a few myelinated nerve fibers with degenerating axons have been seen in cortex (Figure 2), the myelinated nerve fibers with degenerating axons, as indicated in the electron microscope by the presence of dense axoplasm with a loss identifiable organelles, or the presence of empty myelin sheaths (Figure 2), have been encountered in all of the parts of the aging monkey brain that we have examined, suggesting that myelinated nerve fiber loss is ubiquitous. And based on earlier studies of Wallerian nerve fiber degeneration, there is little doubt that once an axon degenerates, breakdown and degeneration of its myelin sheath inexorably follows (e.g. Guill, 1970).

Myelinated nerve fiber loss from white matter in pathways must result in some disconnection between various parts of the central nervous system. But interestingly, although there are no significant correlations between the extent of myelinated nerve fiber loss from the splenium of the corpus callosum and the cognitive decline shown by monkeys (Peters and Settles, 2002), there are correlations between cognitive decline and myelinated nerve fiber loss from the anterior commissure (Sandell and Peters, 2003) and the fornix (unpublished). In this context, it is interesting that cutting the splenium of the corpus callosum, which is the principal fiber pathway connecting the occipital cortices, has little effect on cognition (Innocenti, 1986). The anterior commissure, provides the interhemispheric connection between the entire temporal lobe, as well as parts of the orbitofrontal cortex prefrontal cortex and the amygdala (Demeter et al., 1990; Jouandet and Gazzaniga, 1979; Sullivan and Hamilton, 1973a,b), and numerous studies have shown that the anterior commissure provides a pathway whereby visual information can reach the opposite hemisphere and contribute to behavioral responses, such as two-choice discrimination (Doty et al., 1994; Gross et al., 1977; Sobotka and Ringo, 1996).

The fornix, on the other hand, carries the main output from the hippocampus, and studies of the effects of lesioning the fornix in both monkeys (Fletcher et al., 2006; Gaffan et al., 2003; Owen and Butler, 1981; Wilson et al., 2007) and humans (e.g. D’Esposito et al., 1995; Gaffan et al., 1991) have revealed the role of the fornix in memory and have described amnesia as a major consequence of making such lesions.

It might be assumed that since myelinated nerve fibers are lost from white matter with age, that there must be a concomitant loss of the neurons from which the nerve fibers arise. For the optic nerve, this may be the case, since retinal ganglion cells are subject to damage from ocular changes and systemic disease that occurs frequently in the elderly (Garner et al., 1994). But for the other central nervous system pathways, in which the myelinated nerve fibers arise from cortical neurons, a different reason has to be sought, because, as stated above, recent studies have shown that in normal aging fewer neurons are lost from the cerebral cortices of either monkeys or humans (e.g., Hof et al., 2000; Merrill et al., 2000; Morrison and Hof, 1997; Pakkenberg and Gundersen, 1997; Peters et al., 1998), and Freeman et al. (2008) have recently shown that in normally aging humans cortical neuron numbers are preserved even when there is cortical atrophy. To account for the age-related loss of myelinated
nerve fibers from white matter, we have suggested that only the
portion of the axonal plexus of a pyramidal cell that enters the
white matter, degenerates by a dying back process, leaving the more
extensive local axonal plexus in the cortex intact (Peters and Rose,2003). This scenario would account both for the loss of some myeli-
nated nerve fibers from white matter and for the failure to detect
myelinated nerve fiber loss from the cerebral cortex itself.

DEGENERATIVE CHANGES IN MYELIN SHEATHS

Obviously, in normal aging some myelin sheaths degenerate as a
consequence of their axons degenerating, but in other cases myelin
sheaths degenerate even though the axon is intact. In the latter
category there are two kinds of myelin sheath alterations. The most
common age-related degenerative alteration is an accumulation
of dark cytoplasm in pockets that are produced by a splitting of
the major dense line (e.g. Peters and Sethares, 2002; Peters et al.,
2000; Sandell and Peters, 2003). Examples of what will be referred
to as dense sheaths are shown in Figure 3. The location of the
dense cytoplasm in splits of the major dense line implies that
the cytoplasm must be derived from the parent oligodendrocyte,
because the major dense line of the myelin sheath is produced by
apposition of the cytoplasmic faces of the plasma membrane of
the oligodendrocyte forming the myelin sheath. The amount of
dense cytoplasm can vary from a small amount contained in a local
split of the sheath to an accumulation that is extensive, causing
the sheath to bulge out into the surrounding intercellular space.
Longitudinal sections of affected sheaths show that the accumula-
tions of dense cytoplasm are localized, although there may be
several such loci along an internodal length of myelin. Proof of the
fact that the accumulation of dense cytoplasm in normal aging is
a degenerative change comes from studies of Cuprizone toxicity,
which leads to oligodendrocyte death, resulting in the formation
of dense cytoplasm in the cytoplasmic process on the inner face of
the myelin sheath (Ludwin, 1978). A similar dense cytoplasm also
occurs in the sheaths of mice with a myelin-associated glycoprotein
deficiency (e.g. Lassmann et al., 1997).

Another, but less common myelin alteration associated with
aging is the formation of myelin balloons (e.g. Feldman and Peters,
1998; Peters and Sethares, 2003). These balloons can be as large
as 10 μm in diameter, so that even by light microscopy the larger
balloons they are visible as holes in the neuropil of the aging cor-
tex. Electron microscopic analyses show that these holes are really
localized fluid-filled cavities that are accommodated by splits in
the intraperiod line of the affected sheaths, and since the intra-
period line is produced by apposition of the outer faces of the
cytoplasmic membrane of the oligodendrocyte, the fluid-filled sacs
are potentially in contact with the extracellular space. In larger bal-
loons, the axon of the nerve fiber is pushed to one side of the sheath,

![FIGURE 3](A cross-sectioned nerve fiber bundle in primary visual cortex of a 29-year-old rhesus monkey. In this bundle some of the nerve fibers (N) have normal sheaths and are sectioned through internodes, and others (P) are sectioned through paranodes. Three nerve fibers (ID) have degenerating sheaths, as shown by the accumulation of dense cytoplasm in splits between lamellae. Scale bar = 1 micron.)
suggesting that the fluid in the sac must be exerting some pressure.

But despite this, the sheath is of the same thickness all around thealloon, and there is no obvious change in the periodicity of the
myelin lamellae. Consequently it does not appear that the myelin
sheath is elastic, and so the formation of a balloon must entail
the production of excess myelin by the parent oligodendrocyte.

It should be emphasized that dense sheaths and balloons are not
totally separate entities, since it is not uncommon for a balloon to
have some dense cytoplasm at its base, or for a sheath with a balloon
to have some dense cytoplasm between its lamellae.

Again, there is evidence that the formation of balloons is a
degenerative process, since myelin balloons can be produced by
Caprizzos (Ludwin, 1978) and tetraethyl tin (Malamud and
Hirano, 1973) toxicity, and by chronic copper poisoning (Hull
and Blakemore, 1974). Balloons can also occur in early phases of
Wallerian degeneration (Franzen and Ronnevi, 1989), and in severe
diabetes (Tamura and Parry, 1994).

When the percentage of myelinated nerve fibers showing either
the presence of dense cytoplasm or of balloons is examined, it is
found that the frequency of such profiles increases significantly
with age (e.g. Feldman and Peters, 1998). More importantly there
are significant correlations between cognitive decline and the fre-
cuency of profiles of degenerating sheaths in cortical area 46 (Peters
and Sethares, 2002), splenium of the corpus callosum (Peters and
Sethares, 2002), anterior commissure (Sandell and Peters, 2003),
and fornix (unpublished data). An exception is primary visual
cortex, in which there is no correlation between cognitive decline
and myelin sheath degeneration (Peters et al., 2000). This may
be because primary visual cortex has little role in cognition. It is
assumed that the correlations between myelin degeneration and
cognition are due to the degenerating slowing down conduction
velocity, and thus affecting the timing in neuronal circuits.

Duce et al. (2007) have identified a number of genes that might
produce cytotoxicity in white matter. These genes range from ones
that can affect life span, to ones that can affect the reorganization
glial cytoskeleton, others that can produce oxidative and proteolytic
injury, and yet others that are cell cycle inhibitors. But these authors
focus particular attention on a gene called Klotho, a multifunctional
gene that is known to defend against oxidative stress, and suggest
that with a decrease in the activity of Klotho there is a loss of this
protection, which may result in the death of oligodendrocytes.

THE CONTINUED FORMATION OF MYELIN

There are other age-related alterations in myelin sheaths, which
indicate that myelin continues to form with age. The first is an
increase in the overall thickness of normal myelin sheaths with
age. Thus, in the primary visual cortex of the monkey the mean
number of lamellae in sheaths of myelinated nerve fibers in layer
4CB of young monkeys is 5.6, while in old monkeys it is 7.0 (Peters
et al., 2001). However, the increase in thickness of sheaths is not
uniform, because the mean increase in the numbers of lamellae is
largely because thick sheaths, with more than 10 lamellae, become
more common in old monkeys. This increase in the numbers of
lamellae on nerve fibers with thicker myelin sheaths often affects
their paranodes, so that whereas longitudinal sections of young
nerve fibers show the paranodal pockets of cytoplasm to terminate
regularly and to be all in contact with the underlying
axolemma (see Figure 1), in nerve fibers of old monkeys with
thicker sheaths the paranodes can be disarranged. They can be piled
up on one another, so that only some of the paranodal loops are in
contact with the axolemma (Hinman et al., 2006). A similar situa-
tion has been reported in the myelinated nerve fibers of old rats
(Sugiya et al., 2001), and it seems likely that such disruption of
the paranodal region could affect conduction velocity. As yet, not
determination seems to have been made about whether myelin
sheaths in white matter also become thicker with age.

Another change that is considered to indicate the continued
formation of myelin is the formation of sheaths that contain reduc-
tant myelin, so that the sheaths are too large for their enclosed
axons. When such sheaths are cross-sectioned and examined by
electron microscopy the axon is seen to be located at one end of
an excessively large sheath that loops off into the surrounding
neuropil. Such sheaths were first described by Rosenbluth (1966)
in the cerebellum of the toad. Sturrock (1976) described such
sheaths in anterior commissures of old mice, and later Cullen and
Webster (1979) found them to be common in the optic nerves of
metamorphosing toads. During metamorphosis the optic nerves
become shorter, and the myelin sheaths undergo extensive remodel-
ing, producing redundant sheaths that disappear later in develop-
ment. These events led Cullen and Webster to suggest that the
overproduction of myelin is to allow the sheaths to enlarge so that
they can accommodate subsequent increases in the diameters of
the enclosed axons. However, the role of redundant sheaths in the
aging process is not yet evident, although axons in these sheaths
generally have small diameters.

REMELINIZATION

When the frequencies of various kinds of profiles of myelinated
nerve fibers are quantified in the vertical bundles of nerve fibers in the
cerebral cortex it becomes evident that the frequency of profiles of
paranodes increases with age (Peters and Sethares, 2003). As pointed
out earlier, for the present purposes the paranodes are defined as those
regions at the ends of internodes where the spiraled myelin lamel-
lae gradually terminate as the sheath approaches a node of Ranvier.
As the myelin lamellae terminate, the major dense line opens up to
accommodate a spiral of cytoplasm, which in longitudinal sections
through paranodes appears as a series of pockets of cytoplasm on
each side of the axon (see Figure 1). Where the plasma membrane
on the inner faces of these pockets meet the axolemma, the two
membranes, become very close to each other and form a junctional
complex. This membrane apposition makes it quite easy to identify
profiles of myelinated nerve fibers sectioned through paranodes
(Figure 1), and it turns out there is a 57% increase in the frequency
of paranodal profiles in the aging visual cortex, a 90% increase in
area 46 of prefrontal cortex (Peters and Sethares, 2003), and a 60%
increase in the anterior commissure (Sandell and Peters, 2003).

There could be two reasons for these age-related increases in
paranodal profiles. One is an increase in the lengths of the paran-
odes with age. The second is an overall increase in the numbers of
paranodes. Paranodes do become slightly longer as the numbers of
lamellae in myelin sheaths increase with age, but not enough
to account for the 60% or more increase in the frequency of par-
anoal profiles. Consequently, the increase in frequency has to be
due to an increase in the overall numbers of internodal lengths of
myelin. This would occur if remyelination were taking place, such
that some of the original internodal lengths of myelin degenerate
and are replaced by shorter internodes. The accepted hallmarks of
remyelination are the presence of short internodes and of sheaths
that are inappropriately thin for the size of the enclosed axons (e.g.
Brück et al., 2003; Hirano, 1989; Kreutzberg et al., 1997; Ludwin,
1995; Prince and McDonald, 1997). Such internodes have been
found in the aging central nervous system. Internodes of myelin,
as short as 3–8 μm, are present in old monkeys, as well as sheaths
that are inappropriately thin for the size of the enclosed axon (see
Peters and Sethares, 2003).

We have not been able to identify demyelinated nerve fibers in
the monkey brain, but this should not be a surprise, since such
demyelinated nerve fibers would be expected to resemble unmyel-
elinated nerve fibers. However, in support of the fact that demyel-
elination is taking place, we have seen fragments of degenerating
myelin within the cytoplasm of both microglia, and more com-
monly within astrocytes in the brains of aging monkeys. Also some
of the amorphous phagocytosed material within the cytoplasm of
astrocytes in the cerebral cortex of old monkeys labels for antibodies
to myelin basic protein (Peters and Sethares, 2003).

A recent article on the remyelination of rubrospinal nerve fib-
bers that remyelinate after a contusion lesion of the spinal cords of
mice serves to shed some light on what is happening during aging.

Lasiene et al. (2008) have shown that remyelinated nerve fibers in
the rubrospinal tract of mice have much shorter internodal lengths
than in control mice, and that these remyelinated axons conduct
at a lower rate than the controls. There is also evidence that there
are reductions in conduction velocity in the nerve fibers of aging
cats (Morales et al., 1987; Xi et al., 1999).

Consequently, it can be assumed that remyelinated nerve fibers
with shorter internodes in the aging monkey also have a slower
conduction rate than the nerve fibers that remain unaffected by age,
and that this would affect the timing in neuronal circuits. However,
when correlations between the frequency of occurrence of pro-
files of paranodes and the overall cognitive status of individual
monkeys, as measured by the Cognitive Impairment Index, CII,
are examined, there is no significant correlation between the two
measures, for visual cortex and anterior commissure, but there
is a correlation for area 46 of prefrontal cortex (p < 0.01; Peters
and Sethares, 2002). The reason for this correlation between CII
and paranodal frequency may have to do with unique role of
prefrontal cortex in cognition.

EFFECTS OF AGE ON OLIGODENDROCYTES

In monkey cerebral cortex stained with Perl’s reaction for ferric
iron the processes of some oligodendrocytes in old monkeys show
swellings along their lengths (Figure 4: insert), and when these

FIGURE 4 | Electron micrograph of an oligodendrocyte in layer 6 of area 17
of a 35-year-old rhesus monkey. Three processes, p1–p3, extend from the cell
body. One of the processes, p1, has a swelling that contains dense inclusions,
which are similar to the dense inclusions in the cell body. Scale bar = 1 micron.
The insert shows a light microscopic image of an oligodendrocyte stained with
Perl’s reaction for iron compounds. Note the large swelling (arrow) on one of the
processes. It is similar to the one seen on process p1 in the accompanying
electron micrograph. Area 46 of a 28-year-old monkey. Scale bar = 10 microns.
swellings are examined in the electron microscope it is seen that
they contain dense inclusions (Figure 4). Similar dense inclusions
also occur in the perikarya of old oligodendrocytes (Peters, 1996;
Peters and Sethares, 2004; Peters et al., 1991), and since the dense
material is not membrane bound, it is unlikely to be produced by
phagocytosis. Most probably the material is produced by degenera-
tion of some components of the myelin sheaths that belong to the
oligodendrocytes, and it is tempting to suggest that the material
is related to the dense cytoplasm that accumulates between the
lamellae of some sheaths in old monkeys.

It is also common in old monkeys to find oligodendrocytes
in pairs, rows and groups, suggesting that oligodendrocytes may
be proliferating with age (Peters and Sethares, 2004; Peters et al.,
1991), and when comparisons are made between the numbers of
oligodendrocytes in young and old primary visual cortices it is
evident that there is an increase in the numbers of oligodendrocytes
with age (Peters et al., 1991). Thus in layer 4C, for example, in
which oligodendrocytes account for about 55% of the total popula-
tion of neuroglial cells, there is a 50% increase in the numbers of
oligodendrocytes with age (Peters and Sethares, 2004). In a more
recent study an assessment was made of the effects of age on the
populations of neuroglial cells throughout the depth of monkey
primary visual cortex (Peters et al., 2008). It was seen that the num-
bers of oligodendroglial cells in the various layers essentially reflect
the frequency of myelinated nerve fibers within them, the greatest
numbers of oligodendrocytes being in the deeper layers. Again,
with age the numbers of oligodendrocytes in all layers was found
to increase by about 50%. In contrast, there are no changes in the
frequency of either astrocytes or microglial cells with age. There is
also an increase in the frequency of oligodendrocytes in monkey
optic nerve with age (Sandell and Peters, 2002), as well as in the
corticospinal (unpublished data), but not in the anterior commissurate
(Sandell and Peters, 2003). The reason for this difference is not
yet apparent.

What is the origin of the increased numbers of oligodendrocytes
that are generated, and why are they necessary? The formation of
groups and rows of oligodendrocytes during aging could be taken to
suggest that oligodendrocytes are dividing, but the prevailing view
is that mature oligodendrocytes do not divide (see Keirstead and
Blakemore, 1997; Lubins, 1995), and in a study of the generation of
new cells in the adult dentate gyrus of the hippocampus in old mon-
keys using BrdU labeling no labeled oligodendrocytes were found
(Nguyen et al., 2008). It is now likely that new oligodendrocytes
originate from the oligodendroglial precursor cells which express
NG2 chondroitin sulfate. These cells are scattered throughout the
central nervous system, and in adult rodents they account for about
5% of all neuroglial cells (e.g., Levine et al., 2001).

Studies such as that by Cserghet et al. (2006) have shown that
there is a turnover of oligodendroglial cells in the adult mouse, such
that some oligodendrocytes undergo apoptosis, and die, while new

![Figure 5](image-url) | Diagrammatic representation of the degeneration of sheaths
with age, and the subsequent remyelination of axons. (A) Normal state.
(B) Some sheaths become altered by the presence of dense cytoplasm and the
formation of balloons. This is believed to occur when the oligodendrocyte
accumulates dense inclusions within its cell body and within swellings along its
processes. (C) The degeneration of myelin sheaths leaves axons bare. (D) The
degeneration of myelin sheaths leaves axons bare.
A SYNTHESIS

It is proposed that the following scenario can explain the available data on the effects of age on myelinated nerve fibers in the central nervous system of the monkey. During aging some neurons lose their long projecting myelinated axons that enter white matter, while retaining their local plexuses so that the parent neuron does not die. The consequence of this is that, as has been demonstrated, some myelinated nerve fibers are lost from white matter, even though there is no significant loss of neurons from the cerebral cortex. For other neurons the effects of aging are less severe (see Figure 5), since their axons remains intact, even though some of the internodal lengths of myelin that ensheath them degenerate (Figure 5B). The process of demyelination probably begins as an oligodendrocyte shows stress and starts to accumulate dense inclusions in swellings of its processes and in its perikaryon, as well as in spaces between the lamellae of the myelin sheaths for which the oligodendrocyte is responsible. Ultimately the oligodendrocyte dies, which results in the degeneration and loss of the internodal lengths of myelin belonging to that oligodendrocyte (Figure 5C). Oligodendrocyte precursor cells are then activated and generate new oligodendrocytes that repair the damage by remyelinating the bare lengths of axons. In the process of remyelination, several new oligodendrocytes are involved in the replacement of the original internode of myelin. These oligodendrocytes produce shorter internodal lengths than the original one, and the new sheaths are thinner (Figure 5D). Thus, when profiles of sectioned myelin sheaths in older monkeys are examined, it is found there is an increase in the number of profiles of paranodes, and this is accompanied by an increase in the total number of oligodendrocytes. This breakdown of myelin sheaths, together with the formation of shorter internodal lengths of myelin and the consequent increase in the number of nodes of Ranvier, would result in a slowing down of the rate of conduction along affected myelinated nerve fibers. Consequently the timing in neuronal circuits would be affected and contribute to cognitive impairment that occurs with increasing age.

ACKNOWLEDGMENTS

The author wishes to thank Claire Folger for her continued help and expert technical assistance during the performance of these studies on the aging brain. I am also grateful for the figure that she produced of the changes that affect myelin sheaths during aging. This work was funded by the National Institutes of Health, National Institute on Aging, Program Project Grant 1PO AG000001.

REFERENCES

Gutmann, G., Jacobs, A., Kikkinis, R., Killam, R. L. Moss, M. B., and Sandor, T.
Peters, Myelinated nerve fibers and aging

Frontiers in Neuroanatomy

www.frontiersin.org

June 2009 | Volume 3 | Article 11 | 9

Author Queries

Q1 Please add "Merrill et al. (1998)" to the reference list.
Q2 We have changed "Wisco et al., 2007" to "Wisco et al., 2008" inside the text as per the reference list. Please confirm if this is fine.
Q3 Please cite "Felts et al. (1997)" inside the text.
Q4 Please cite "Levine and Torres (1992)" inside the text.
Q5 Please cite "Norton (1996)" inside the text.
Q6 Please cite "Peters et al. (1994)" inside the text.
Q7 Please cite "Wang et al. (2005)" inside the text.
Q8 Please cite "Waxman et al. (1995)" inside the text.