The course descriptions below are correct to the best of our knowledge as of April 2016. Instructors reserve the right to update and/or otherwise alter course descriptions as necessary after publication. The listing of a course description here does not guarantee a course’s being offered in a particular semester. The Course Rotation Guide lists the expected semester a course will be taught. Please refer to the published schedule of classes for confirmation a class is actually being taught and for specific course meeting dates and times. In addition to the courses listed in the Bulletin and courses approved after April 1, SPH degree candidates may register for a directed (independent) study with a full-time SPH faculty member. For more information, speak with your faculty advisor or a staff member in the SPH Registrar’s office.

  • SPH BS 853: Generalized Linear Models with Applications
    Graduate Prerequisites: The biostatistics and epidemiology MPH core course requirements and BS805 or consent of instructor
    This course introduces statistical models for the analysis of quantitative and qualitative data, of the types usually encountered in health science research. The statistical models discussed include: Logistic regression for binary and binomial data, Nominal and Ordinal Multinomial logistic regression for multinomial data, Poisson regression for count data, and Gamma regression for data with constant coefficient of variation. All of these models are covered as special cases of the Generalized Linear Statistical Model, which provides an overarching statistical framework for these models. We will also introduce Generalized Estimating Equations (GEE) as an extension to the generalized models to the case of repeated measures data. The course emphasizes practical applications, making extensive use of SAS for data analysis.
  • SPH BS 854: Bayesian Methods in Clinical Trials
    Graduate Prerequisites: SPH BS851 or BS861 or consent of instructor
    Bayesian statistical methods use prior information or beliefs, along with the current data, to guide the search for parameter estimates. In the Bayesian paradigm probabilities are subjective beliefs. Prior information/ beliefs are input as a distribution, and the data then helps refine that distribution. The choice of prior distributions, posterior updating, as well as dedicated computing techniques are introduced through simple examples. Bayesian methods for design, monitoring analysis for randomized clinical trials are taught in this class. These methods are contrasted with traditional (frequentist) methods. The emphasis will be on concepts. Examples are case studies from the instructors' work and from medical literature. R will be the main computing tool used.
  • SPH BS 855: Bayesian Modeling for Biomedical Research & Public Health
    Graduate Prerequisites: BS805 or MA684 and MA581/MA582 or equivalent or consent
    The purpose of this course is to present Bayesian modeling techniques in a variety of data analysis applications, including both hypothesis and data driven modeling. The course will start with an overview of Bayesian principles through simple statistical models that will be used to introduce the concept of marginal and conditional independence, graphical modeling and stochastic computations. The course will proceed with the description of advanced Bayesian methods for estimation of odds and risk in observational studies, multiple regression modeling, loglinear and logistic regression, latent class modeling including hidden Markov models and application to model-based clustering, graphical models and Bayesian networks. Applications from genetics, genomics, and observational studies will be included. These topics will be taught using real examples, class discussion and critical reading. Students will be asked to analyze real data sets in their homework and final project.
  • SPH BS 856: Adaptive Designs for Clinical Trials
    Graduate Prerequisites: SPH BS851
    An adaptive design is a clinical trial design that allows modification to aspects of the trial after its initiation without undermining the validity and integrity of the trial. Adaptive designs have become very popular in the pharmaceutical industry because they can increase the probability of success, considerably reduce the cost and time of the overall drug development process. With a recent rapid development in this area, there is a high demand for statisticians proficient in designing and conducting adaptive clinical trials. Students will learn different (both frequentist and Bayesian) adaptive designs and gain hands-on experiences on adaptive randomization, adaptive dose-finding, group sequential, and sample-size reestimation designs.
  • SPH BS 857: Analysis of Correlated Data
    Graduate Prerequisites: SPH BS805 or BS852
    The purpose of this advanced seminar is to present some of the modern methods for analyzing tricorrelated observations. Such data may arise in longitudinal studies where repeated observations are collected on study subjects or in studies in which there is a natural clustering of observations, such as a multi-center study of observations clustered within families. Students start with a review of methods for repeated measures analysis of variance and proceed to more complicated study designs. The course presents both likelihood-based methods and quasi-likelihood methods. Marginal, random effects and transition models are discussed. Students apply these methods in homework assignments and a project.
  • SPH BS 858: Statistical Genetics I
    Graduate Prerequisites: SPH BS723 or equivalent as determined by instructor.
    This course covers a variety of statistical applications to human genetic data, including collection and data management of genetic and family history information, and statistical techniques used to identify genes contributing to disease and quantitative traits in humans. Specific topics include basic population genetics, linkage analysis and genetic association analyses with related and unrelated individuals.
  • SPH BS 859: Applied Genetic Analysis
    Graduate Prerequisites: SPH BS858 or EP763.
    Statistical tools such as linkage and association analysis are used to unravel the genetic component of complex disease. Investigators interested in the genetic analysis of complex traits need a basic understanding of the strengths and weaknesses of these methodologies. This course will provide the student with practical, applied experience in performing linkage and association analyses, including genome-wide analyses. Special emphasis is placed on understanding assumptions and issues related to statistical methodologies for genetic analysis to identify genes influencing complex traits. Students will use specialized genetics software for homework assignments.
  • SPH BS 860: Statistical Genetics II
    Graduate Prerequisites: SPH BS858 or consent of instructor (
    This course covers current topics in statistical genetics, with emphasis on how statistical techniques can be used with various types of genetics data for mapping genes responsible/contributing to complex human diseases. Topics such as genetics map functions, gene mapping in experimental organisms, advanced linkage analysis methods, statistical approaches for the analysis of genome-wide high density SNP scans in unrelated and family samples will be discussed.
  • SPH BS 861: Applied Statistics in Clinical Trials II
    Graduate Prerequisites: BS851 or consent of instructor (
    This course covers a variety of biostatistical topics in clinical trials, including presentation of statistical results to regulatory agencies for product approval, analysis of safety data, intent-to-treat analyses and handling of missing data, interim analyses and adaptive designs, and analyses of multiple endpoints. Upon completion of the course, students will be able to make and defend decisions for many study designs and for issues faced when analyzing efficacy and safety data from clinical trials. Students will also be able to present, in a written format following standard guidelines accepted by the clinical trials' community, results of such efficacy and safety analyses to the medical reviewers and statistical reviewers of regulatory agencies.
  • SPH BS 940: Culm Exp Biost
  • SPH EH 705: Toxicology for Public Health
    This is a two credit course designed to introduce the basic concepts of toxicology to students from multiple fields and disciplines. The objectives of the first part of the course are to detail the routes of exposure to xenobiotics (chemicals and drugs) and to trace the biochemical and biological pathways through which xenobiotics are absorbed, metabolized, distributed, excreted and biomonitored. In the second section of the course, we examine the effects of molecular/cellular changes on the function of representative organ systems including the respiratory, endocrine/reproductive, immune, liver, kidney and nervous systems. Students are also introduced to regulatory toxicology and food toxicology. At the completion of the course students are expected to have an extensive toxicology vocabulary. Students will also have a working knowledge of: 1) general toxicological principles, 2) inter-species and inter-individual differences in responses to toxicants, 3) the effects of several key toxicants on the normal function of several organ systems, and 4) the basic approach to regulatory toxicology. The overall objective of this course is to provide the student with an introduction to the language and principles of toxicology such that these principles may be applied to public health situations and communicated to the general public.
    This course provides a foundation in the basic mechanisms required for human health. It is designed for students who have little or no background in the biological sciences. Students will learn the fundamentals of human physiology, from the molecular/cellular level to the level of the various organs and organ systems. The integration of organ system functions to maintain homeostasis, or health, is explored in depth. After completing this course, students will be able to participate knowledgeably in both technical and non-technical discussions of public health issues. Moreover, upon entering the workforce as practitioners, they will be able to effectively communicate with and educate the public about actually how public health activities and interventions serve to promote healthy lives.
  • SPH EH 710: Physiological Mechanisms of Health and Disease
    This course provides students with a detailed working knowledge of the normal mechanisms of human body function. It is most appropriate for MS and PhD students, though it is available to all students. Physiological mechanisms are studied from the molecular level to the level of organ systems, and emphasis is placed on understanding how body processes are regulated and integrated so as to achieve homeostasis characteristic of a normal, healthy individual. Students will become acquainted with both the gross and histological anatomy of major organs. For each system covered, a case study of a disease of significant public health interest is used to reinforce basic physiological principles, and to acquaint students with physiological measurements commonly used in clinical settings. This course is recommended for all students who need a substantive understanding of human physiology for subsequent coursework. This course will be of special value to students whom expect their careers to involve close interaction with health care providers.
  • SPH EH 713: Molecular Biology and Public Health
    The last 10 years has seen an explosion in the discipline of molecular biology and in the technologies available for defining the molecular basis of disease and for confirming the role of the environment in those diseases. These stunningly rapid advances have important implications for current and future approaches to public health. Therefore, an understanding of the principal concepts of how molecular biology relates to public health is critical to the modern public health practitioner. The goal of this course is to equip students with the ability to understand the potential applications of genetic engineering for various health specialties. In particular, the course introduces the student to the basic concepts of cellular biology and molecular genetics and investigates the use of a number of powerful molecular techniques including, but not limited to, gene cloning, gene therapy, genetic engineering of animals and plants (GMOs), identification of molecular bio-markers of susceptibility, mapping of the molecular signals that form the basis of cancer, pinpointing the footprints of environmental chemical exposures in cancer and other diseases, and mining of the human genome. The implications of these advances vis-a-vis the right to privacy, discrimination on the basis of genetic makeup, the cloning of humans, and other ethical issues are also addressed. While a background in biology is helpful, this course is negotiable by any student showing a high level of enthusiasm for scientific discovery.
  • SPH EH 717: Foundations of Environmental Health
    EH717 is the introductory core course that focuses on assessment and control of a broad range of physical, chemical, and biological factors in the natural and built environment that affect the health of individuals and populations. EH717 addresses an array of environmental issues including emergency preparedness; food safety and regulation; electromagnetic radiation; energy utilization; solid, liquid, and hazardous materials management; the fate of chemicals in the environment; vector control; livestock production; air and water quality; occupational health and safety; the built environment; environmental justice; and other timely environmental issues of growing importance across the globe.
  • SPH EH 725: Analytical Methods in Environmental Health
    Graduate Prerequisites: Required for all EH concentrators who have not completed EH765. EH717may be taken concurrently with or prior to EH725.
    Students in this course learn the skills, methods and critical thinking framework necessary for upper level environmental health courses and for success as public health professionals. Environmental Health is a field of public health in which environmental hazards and health risks to populations are identified, assessed and managed through a data-driven process. This course extends the depth of concepts taught in EH717 and should be taken concurrently for students entering in the fall semester. We take the opportunity to partner with communities to design and conduct a data collection and analysis effort that is suitable for rigorous analyses with the many tools commonly used in environmental health.
  • SPH EH 730: Meth Eh Science
  • SPH EH 735: The Environmental Determinants of Infectious Diseases
    Graduate Prerequisites: SPH PH709 or EH710 or one year of college biology within last 5 yearswith a B or better
    The environment is a key determinant of infectious disease burden in a population. This course presents an overview of how existing and, in particular, changing global environmental factors can affect the transmission cycle of infectious pathogens in both developing and industrialized countries. It examines issues of water, sanitation and hygiene in resource-limited settings that contribute enormously to childhood death due to infectious diarrheal diseases, and to morbidity and mortality due to neglected tropical diseases (NTDs). It also explores how environmental alterations and natural disasters can result in ecological changes that impact on the maintenance and spread of infectious diseases in a community. Sustainable environmental intervention strategies to reduce the burden of infectious diseases will be considered for each of the major diseases covered in class. This course is appropriate for MPH students and undergraduates, especially those interested in biology, global health, and the environment.
  • SPH EH 745: Wastewater and Health/Sustainable Sanitation
    Graduate Prerequisites: The MPH environment core course or consent of instructor.
    This course provides students with an overview of the relationship between human health, ecological health, and sanitation. The different disposal and treatment methods for human excreta are described in their historical and political contexts. Related topics such as the land appliation of sewage sludge, the role of government agencies, nongovernmental organizations, and public health experts are presented as well as practical solutions toward sustainable sanitation. This course involves a group project and a paper.
  • SPH EH 750: Water Quality and Public Health
    Graduate Prerequisites: The MPH environmental core course requirement or permission of the instructor. For undergrads, course in biology or chemistry.
    This course is a lecture and methods course on water resources and public health. Water supply and water quality discussions provide an overview of the technical and scientific basis on which public health decisions are made regarding disease prevention and community health. The chemical, physical, and biological processes necessary for designing and managing municipal drinking water treatment plants are analyzed. Water quality topics include standards and regulations; non-point source runoff;point source discharge; and water quality analysis of drinking and surface waters. Students will sample, analyze and use water quality objectives for comparison. Social, political, and economic factors effecting water quality and treatment will be discussed. The course will conclude with historical and international perspectives on water resources and management.