Mechanical Engineering

  • ENG ME 525: Technology Ventures
    Undergraduate Prerequisites: Senior or graduate standing in an engineering or science discipline, or consent of instructor.
    An introduction to the formation and management of technology-based enterprises for engineers and scientists. Modules include opportunity recognition and evaluation, gathering financial and human resources, and managing and harvesting ventures. Goals include an understanding of basic start-up finance and accounting, writing business plans, presenting venture ideas to industry experts, and venture leadership skills. Students become familiar with fundamental technical and engineering issues in a wide variety of high-tech industries, especially information technology, life sciences, biotechnology and telecommunications. Case studies, lectures, workshops, and projects are utilized. 4 cr.
  • ENG ME 526: Simul Phys Proc
    Undergraduate Prerequisites: Senior or graduate standing in the engineering, physics, or the chemistry disciplines, or consent of instructor.
    This course description is currently under construction.
  • ENG ME 527: Transport Phenomena in Materials Processing
    Undergraduate Prerequisites: ENG ME 304; or equivalent or consent of instructor
    Introduction to momentum, heat and mass transport phenomena occurring in various processes. Whereas transport phenomena underlie many processes in engineering, agriculture, meteorology, physiology, biology, analytical chemistry, materials science, pharmacy and other areas, they are key to specific applications in diverse areas such as materials processing, green manufacturing of primary materials, biological membranes, fuel cell engineering, synthesis of clean fuels. This course covers three closely related transport phenomena: momentum transfer (fluid flow), energy transfer (heat flow) and mass transfer (diffusion). The mathematical underpinnings of all three transport phenomena are closely related and the differential equations governing them are frequently quite similar. Since in many situations the three transport phenomena occur together, they are presented and studied together in this course. Meets with ENGMS527. Students may not receive credit for both.
  • ENG ME 528: Biological Physics
    Undergraduate Prerequisites: Graduate standing or instructor consent. Introductory courses in hydrodynamics, thermodynamics, math (Fornier transform) and standard Calculus.
    This course offers an introduction to biological physics and consists of four blocks. 1)Thermodynamics and statistical physics with a particular focus on Einstein's approach. 2)Physics of (Bio) polymer networks. 3) Nano and Microfluidics and life and low Reynold numbers. 4) Interface physics and Biomembranes.
  • ENG ME 530: Introduction to Micro- and Nano-mechanics of Solids
    Undergraduate Prerequisites: CAS PY 313 or CAS PY 354 or ENG ME 309; or equivalent or consent of instructor
    Mechanics and physics of solids at the nanometer scale: introductory graduate level course for students with background in undergraduate engineering mechanics (or solid state physics) and mathematics. Review of continuum solid mechanics fundamentals. Introduction to dislocation theory. Continuum elastic theory of dislocations. Mechanics of thin films. Review of fundamentals of solid state physics. Electron motion in a periodic potential. Derivative of bulk material properties from free-electron and free-atom models. Phonons. Introduction to atomistic computational methods. Meets with ENGMS530. Students may not receive credit for both.
  • ENG ME 531: Phase Transformations
    Undergraduate Prerequisites: ENG ME 306; Material Science or graduate standing.
    Graduate-level introduction to phase transformations; solution thermodynamics; phase diagrams; kinetics of mass transport and chemical reactions; atomistic models of diffusion; nucleation and growth; spinodal decomposition; martensitic transformations; order-disorder reactions; point defects and their relation to transport kinetics.
  • ENG ME 532: Atomic Structures and Dislocations in Materials
    Undergraduate Prerequisites: ENG ME 305 and ENG ME 306; or graduate standing
    Relates mechanical behavior of crystalline materials to processes occurring at microscopic and/or atomic levels. Topics covered include structure of materials and their determination by X-ray diffraction; dislocations and their relationship to plastic deformation and strength of materials; fracture and creep. Meets with ENGMS532. Students may not receive credit for both.
  • ENG ME 533: Energy Conversion
    Undergraduate Prerequisites: ENG ME 304.
    Thermodynamic and mechanical aspects of modern conventional energy conversion systems, including steam electric power plants, gas turbine and internal combustion engines, and refrigeration systems. Combined cycle and cogeneration are also considered, as well as economic and environmental aspects of energy conversion. Includes design project. 4 cr.
  • ENG ME 534: Mat Tech Microe
    Undergraduate Prerequisites: Graduate status or consent of instructor.
    This course deals with the materials issues in microelectronics processing. Fundamental materials science concepts of bonding, electronic structure, crystal structure, defects, and phase diagrams are applied to key processing steps in microelectronics technology. Also included are single crystal growth, lithography, thermal oxidation of Si, dopant diffusion, ion implantation, thin film deposition, etching and back-end processing: as well as widely used microelectronics software such as SUPREM.
  • ENG ME 535: Green Manufacturing
    Undergraduate Prerequisites: Senior/graduate standing; CASCH101 or CASCH131; CASMA226; ENGME304 orENGEK424; ENGME465 or ENGME529; or consent of instructor.
    Provides a systems view of the manufacturing process that aims to efficiently use energy, water, and raw materials to minimize air and water pollution and generation of waste per unit of the manufactured product. Specifically, the course will discuss methods to maximize yield and minimize waste effluents in processes, ways to devise treatment strategies for handling manufacturing wastes, innovative ways to decrease energy consumption in manufacturing, by-product use and product recycling, and policies that encourage green manufacturing. Meets with ENGMS535. Students may not receive credit for both.
  • ENG ME 538: Introduction to Finite Element Methods and Analysis
    Undergraduate Prerequisites: ENG ME 305, Linear Algebra, Ordinary differential equations.
    This class serves as an introduction to linear finite element method, and its application to static and dynamic problems with an emphasis on solid mechanics. The first half of the course will use the stiffness and energy approaches to developing the finite element equations as applied to bars, beams and trusses. Lab sessions will focus on learning how to utilize commercially-relevant finite element software to find numerical solutions to problems in solid mechanics. The second half of the course will focus on developing the finite element method as one that is applicable as a general numerical method for solving ordinary and partial differential equations that arise in all areas of science and engineering, including solid and fluid mechanics, thermal systems and electrostatics.
  • ENG ME 541: Classical and Non-Equilibrium Thermodynamics
    Undergraduate Prerequisites: ENG ME 304.
    First law and second law. Entropy. Extremum principles. Gases, liquids, and solids. Phase transition. Solutions. Kinetics. Fields and internal degrees of freedom. Non-equilibrium systems. Radiation. Biological systems. Small systems. Stability theory. Critical phenomena. Statistical mechanics. 4 cr. either sem.
  • ENG ME 542: Advanced Fluid Mechanics
    Undergraduate Prerequisites: ENG ME 422.
    Incompressible fluid flow. Review of control-volume approach to fluids engineering problems, with advanced applications. Differential analysis of fluid motion. Derivation of full Navier-Stokes, Euler, and Bernoulli equations. Unsteady Bernoulli equation. Velocity potential and its application to steady two-dimensional flows. Vorticity and vortex motion. Eulerian vs Lagrangian analysis.
  • ENG ME 543: Sustainable Power Systems: Planning, Operation and Markets
    Undergraduate Prerequisites: Graduate/senior status or consent of instructor.
    Breakthroughs in clean energy generation technologies and the advantage of exploiting efficiently the available work in fossil fuels will render electricity the dominant energy form in a sustainable environment future. We review the key characteristics of Electric Power Transmission and Distribution (T&D) networks and the associated planning and operation requirements that ensure supply adequacy, system security and stability. Capital asset investment and operation cost minimization is discussed in a systems engineering context where the assets as well as the dynamic behavior of generators, T&D networks, and loads interact. Recent developments in the formation of competitive wholesale markets at the High Voltage Transmission system level, the associated market participation and clearing rules and the market clearing optimization algorithms are presented and analyzed in terms of their effectiveness in fostering cost reflective price signals and competitive conditions that encourage optimal distributed/not-centralized investment and operating decisions. Finally, we present T&D congestion and supply-demand imbalance related barriers to the widespread adoption of environmentally friendly and economically efficient technological breakthroughs, and propose a systems engineering and real-time retail-market based coordination of centralized as well as decentralized generation, storage and load management resources that is able to achieve desirable synergies and mitigate these barriers. 4 cr.
  • ENG ME 544: Networking the Physical World
    Undergraduate Prerequisites: ENGEC312 & ENGEC450 or equivalent. ENGEC441 is desirable. C programming experience.
    Considers the evolution of embedded network sensing systems with the introduction of wireless network connectivity. Key themes are computing optimized for resource constrained (cost, energy, memory and storage space) applications and sensing interfaces to connect to the physical world. Studies current technology for networked embedded network sensors including evolving protocol standards. A laboratory component of the course introduces students to the unique characteristics of distributed sensor motes including programming, reliable communication, sensing modalities, calibration, and application development. Experience with the C language is required. Meets with ENG EC544; students may not receive credit for both.
  • ENG ME 545: Electrochemistry of Fuel Cells and Batteries
    Undergraduate Prerequisites: ENG ME 529.
    Electrochemistry of high temperature fuel cells, batteries and ceramic gas separation membranes. Types, advantages and disadvantages of fuel cells currently being developed by the power generation industry, and the electrochemical underpinnings of fuel cell operation. Thermodynamics of fuel cells, electrode kinetics and mass transport in porous electrodes. Measurements techniques (dc polarization, ac impedance spectroscopy and blocking electrodes) used extensively in fuel cell research and development. Operation of batteries and ceramic gas separation membranes. Current manufacturing techniques used in fuel cell industry. Meets with ENGMS545. Students may not receive credit for both.
  • ENG ME 546: Introduction to Micro/Nanofluidics
    Undergraduate Prerequisites: ENG ME 303 and ENG ME 419; or consent of instructor
    This course is an introductory graduate course in mechanical engineering. It is aiming to introduce unique transport phenomena and major applications of micro/nanofluidics to senior undergraduates and new graduate students. Topics include overview of micro/nanofluidics, scaling laws, intermolecular forces, lubrication theory, surface tension and Marangoni flow, chaotic mixing, electrowetting, electrokinetics, dielectrophoresis, chemical reaction in confined space, micro/nano fabrication, etc. Special emphasis will be focused on understanding fundamental mechanism of transport phenomena at the micro/nanoscale. This is a 4 credit course.
  • ENG ME 549: Structures and Function of the Extracellular Matrix
    This is an introductory course dealing with the detailed structure of the basic units of the extracellular matrix including collagen, elastin, microfibrils, and proteoglycans as well as the functional properties such as elasticity at different scales from molecule to fibrils to organ level behavior. The biological role of these components and their interaction with cells is also covered. Interaction of enzymes and the matrix in the presence of mechanical forces is discussed. Mathematical modeling is applied at various length scales of the extracellular matrix that provides quantitative understanding of the structure and function relationship. Special topics include how diseases affect extracellular matrix in the lung, cartilage, and vasculature. The relevance of the properties of native extracellular matrix for tissue engineering is also discussed. Meets with BE 549 and MS 549. 4 cr.
  • ENG ME 550: Product Supply Chain Design
    Undergraduate Prerequisites: ENG ME 415; or consent of instructor.
    Integrated design of systems to deliver quality products to customers. Lean manufacturing with hard automation. Worker empowerment with active learning. Creation of lean supply chains with control of logistics and information. Creating customer value in a world of excess capacity. Industry project required.
  • ENG ME 555: Fabrication and Materials
    Undergraduate Prerequisites: Graduate status or consent of the instructor.
    This course will explore the world of microelectromechanical systems (MEMS) and NEMS. This requires an awareness of design, fabrication, and materials issues involved in micro/nanosystems. We will go over this through a combination of lectures, case studies, and individual homework assignments. The course will cover fabrication technologies, material properties, structural mechanics, basic sensing and actuation principles, packaging, and MEMS markets and applications. The course will emphasize the fabrication and materials of micro/nanosystems. This is not because the other parts aren't important. Instead, it is because with fabrication and materials expertise there is something concrete you can do that will always help. When we exam special topics and case studies, a lot of these other pieces will be put together.