• ENG BE 780: Brain Machine Interfaces
    Brain Machine Interfaces introduces major approaches and central challenges in BMI applications. An initial overview will cover low-level details of interfacing with neural tissue, including electrode and optical designs, types of neural signals, and issues of biocompatibility and signal degradation. The core of the course will consider applications, with topics focused on (1) signal decoding approaches in motor control applications, signal to noise requirements, and effects of training and plasticity, and (2) neural stimulation, including choice of peripheral vs. central targets, consequences of topographic organization, types of perceptual responses, and limits to control of distributed systems. Special emphasis will be placed on comparing and critiquing the expanding range of applicable technologies, from in-dwelling microelectrodes to cutting edge neurophotonic tools. To follow rapid changes in the field, course materials will be drawn primarily from research literature. In addition to readings, discussion and computational exercises, students will complete a final project. This is a 4 credit course.
  • ENG BE 790: Biomedical Engineering Seminar
    Undergraduate Prerequisites: Required for graduate students in biomedical engineering.
    Discussion of current topics in biomedical engineering. Students are expected to read assigned journal articles and to participate actively in weekly discussion meetings. Meetings organized around presentations by invited guests of their research problems, strategy, and technique.
  • ENG BE 791: PhD Biomedical Engineering Laboratory Rotation System
    Undergraduate Prerequisites: PhD standing in biomedical engineering.
    This course allows PhD students to take part in a laboratory rotation system. During these rotations, students become familiar with research activity within departmental laboratories that are of interest to them. These rotations help students identify the laboratory in which they will perform their dissertation research. Postbachelor's PhD students must complete three rotations: one in their first semester of matriculation, and two in their second semester. Post- master's PhD students must complete a minimum of two rotations, one of which must be in their first semester of matriculation. Normally each rotation will last up to seven weeks. Variable cr.
  • ENG BE 792: Critical Literature Review
    Undergraduate Prerequisites: First year BME PhD graduate students only.
    Peer-reviewed publications in the area of biomedical engineering will be critically evaluated. Scientific ethics and the process of review and publication of manuscripts will be discussed. The classes will be a mix of didactic information and group discussion. Methodological issues covered will include study design, techniques used, and interpretation of research findings. Students completing this course will understand the principles underlying preparation and publication of scientific manuscripts and will be able to apply these principles as they read the scientific literature. 2 cr
  • ENG BE 795: Biomedical Innovation Strategies
    This lecture and discussion course will introduce BME graduate students to advanced analylical and strategic planning tools and techniques used by biomedical, biotech, and healthcare companies to anticipate, evaluate, and incorporate breakthrough medical innovations. Senior executives and strategic planners, along with investors, advisors, and clinical innovators will share insights through guest lectures, cases, interviews, and discussions with BME PhD and Masters students interested in biomedical research and product development in the private sector.
  • ENG BE 801: Teaching Practicum
    Undergraduate Prerequisites: Students must be in the BME PhD program.
    This course cannot be used to meet the structured course requirements. Practical teaching experience for an assigned course, includes some combination of running discussion sections, managing laboratory sections, providing some lectures, preparing homework and solution sets, exams, and grading. Attend lectures/seminars on best teaching practices. 4 cr
  • ENG BE 802: Teaching Practicum II
    Practical teaching experience. 4 cr
  • ENG BE 900: PhD Research
    Undergraduate Prerequisites: Graduate standing.
    Graduate Prerequisites: Restricted to pre-prospectus PhD students.
    Prerequisite: restricted to pre-prospectus PhD students. Participation in a research project under the direction of a faculty advisor leading to the preparation and defense of a PhD prospectus. Variable cr.
  • ENG BE 951: Independent Study
    Undergraduate Prerequisites: By petition only.
    A course of reading under the direction of a faculty advisor covering subject matter not available in a lecture course. Final report or examination normally required. Variable cr
  • ENG BE 952: Mentored Project
    Undergraduate Prerequisites: Enrollment in the BME MS program.
    Students who are pursuing a project to satisfy their practicum requirement for the MS degree will register for up to 4 credits of this course. The course may be taken more than once for up to four credits (ex. two credits in Fall, two credits in Spring). Students will select a suitable project with a mentor that can be completed in 4 credits. The BME Graduate Committee must approve all proposed projects. Each student must write a project report and/or deliver a formal presentation at the end of the course that will be graded by their project mentor. All reports and presentation materials must be received by the BME Graduate Committee.
  • ENG BE 954: MS Thesis
    Undergraduate Prerequisites: Graduate Standing.
    Graduate Prerequisites: Restricted to MS students by petition only.
    Participation in a research project under the direction of a faculty advisor leading to the preparation of an original MS thesis. For students pursuing an MS thesis to satisfy the practicum requirement for the MS degree.
  • ENG BE 991: PhD Dissertation
    Undergraduate Prerequisites: Graduate standing.
    Graduate Prerequisites: BE 900; restricted to post-prospectus PhD students.
    Participation in a research project under the direction of a faculty advisor leading to the preparation and defense of an original PhD dissertation.
  • ENG BF 527: Appl Bioinfmtcs
    Undergraduate Prerequisites: See course description
    This course description is currently under construction.
  • ENG BF 541: Bioinformatics Internship
    Internships provide the bridge between classroom/laboratory study and ?real-world? employment. Each student must complete an internship with a minimum of 400 hours of on-the-job experience (e.g., 10 weeks full-time work in the summer). The format is very flexible, and part-time internships running concurrently with classes or employment are acceptable. Students must consult with their academic advisor to assess the suitability of a proposed internship.
  • ENG BF 571: Dynamics and Evolution of Biological Networks
    Graduate Prerequisites: CAS MA 226 and CAS MA 242; EK102 can be used in lieu of the MA242 pre-req. Familiarity with differential equations and linear algebra at equivalent levels and the consent of instructor can be used in lieu of both pre-reqs.
    The course focuses on mathematical models for exploring the organization, dynamics, and evolution of biochemical and genetic networks. Topics include: introductions to metabolic and genetic networks, deterministic and stochastic kinetics of biochemical pathways; genome-scale models of metabolic reaction fluxes; models of regulatory networks; modular architecture of biological networks.
  • ENG BF 690: Bioinformatics Challenge Project
    Project course for first year Bioinformatics graduate students. Open-ended problems will involve bioinformatics as a key element, typically requiring the use of large data sets and computational analysis to make predictions about molecular function, molecular interactions, regulation, etc. Projects will be proposed by the Bioinformatics program faculty and selected by student in teams of three. The end result will be a set of predictions, some of which can be validated retrospectively using data available through online sources and some of which will require experimental validation. During the last 2 months of the academic year, teams will design feasible validation experiments in consultation with the experimental faculty.
  • ENG BF 752: LAW&Eth Bio Sci
    This course description is currently under construction.
  • ENG BF 768: Biological Database Analysis
    Describes relational data models and database management systems. Teaches the theories and techniques of constructing relational databases with emphasis on those aspects needed for various biological data. Introduces the relational database query language SQL. Describes methods for ensuring data consistency and data retrieval efficiency. Object-oriented programming is introduced primarily as an implementation aid for constructing, loading, and accessing databases. Utilizes web-based programming tools to implement user access to databases. Emphasis will be on solving problems associated with large and complex data sets. Course includes a final project implementing a database using real data from a local biology/medical school lab.
  • ENG BF 778: Physical Chemistry for Systems Biology
    This course introduces students to quantitative modeling in bioinformatics and systems biology. We begin with basic principles of statistical thermodynamics, chemical kinetics, with selected applications in biomolecular systems. Next we describe molecular driving forces in biology, and computation with biomolecular structures. Finally we discuss quantitative models of biomolecular networks, and design principles of biological circuits.
  • ENG BF 810: Phd Lab Rotat'N
    This course description is currently under construction.