# Courses

• ENG BE 602: Ord Diff Eqtns
This math module will focus on four key ODE concepts: Linear dynamical systems, nonlinear conservative and excitable systems, discrete- time state machines, and generalized Fourier series solutions to Sturm- Liouville problems. Topics include: Filters, enzymatic networks, mechanical models for biomaterials, oscillators and limit cycles, phase- locked loops, nonlinear Leslie matrices, Legendre polynomials, Bessel functions, and a prelude to solving PDE problems associated with heat transfer, diffusion, and electrostatics. Prior exposure to linear algebra (BE 601 equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is helpful. 2 cr.
• ENG BE 603: Partial Diff Eq
This math module will focus on elliptical and parabolic PDEs associated with transport phenomenon problems in biomedical engineering. We will visit four PDE concepts: Separation of variables, integral transform solutions, superposition principles, and numerical approximations using finite-difference schemes. Topics include: 2D and 3D anisotropic Laplace's, Poisson's, and the heat equations in different coordinate systems, Fourier and Laplace transform solutions, 2D ADI methods, Green's functions, and the method of images. Prior exposure to linear algebra (BE 601 equivalent), ODEs (BE 602 or MA 226 equivalent), Fourier series, Fourier and Laplace transforms (BE 401 equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is highly recommended. 2 cr.
• ENG BE 604: Stat & Num Meth
In the final math module, we will focus on how linear algebra, ODEs, statistics, and signals & systems techniques can be used to interrogate data from biological and engineering experiments. The lecture topics include: Jacobi, Gauss-Seidel, and SOR iterative solvers for large linear systems; Gauss-Newton iterations (nonlinear least-squares); the ANOVA table, multi- factor regression, and intro to the general linear model (GLM); data deconvolution; Monte Carlo, bootstrap, and kernel density estimation. Prior exposure to linear algebra (BE 601 equivalent), basic probability and statistics (BE 200 equivalent), and working knowledge of a programming language (Matlab, Python, etc.) is highly recommended. 2 cr.
• ENG BE 605: Molecular Bioengineering
Provides engineering perspectives on the building blocks of living cells and materials for biotechnology. Focuses on origins and synthesis in life and the laboratory, including biological pathways for synthesis of DNA, RNA and proteins; transduction, transmission, storage and retrieval of biological information by macromolecules; polymerase chain reaction, restriction enzymes, DNA sequencing; energetics of protein folding and trafficking; mechanisms of enzymatic catalysts and receptor-ligand binding; cooperative proteins, multi- protein complexes and control of metabolic pathways; generation, storage, transmission and release of biomolecular energy; and methods for study and manipulation of molecules which will include isolation, purification, detection, chemical characterization, imaging and visualization of structure. 4 cr
• ENG BE 606: Quantitative Physiology for Engineers
Course in human physiology for biomedical engineering students. Fundamentals of cellular and systems physiology, including the nervous , muscular, cardiovascular, respiratory, renal, gastrointestinal, endocrine and immune systems. Quantitative and engineering approaches will be applied to understanding physiological concepts. 4 cr
• ENG BE 694: Biomedical and Clinical Needs Finding
This course requires students to directly observe clinical procedures in selected medical specialties in appropriate hospital settings. Students will document biomedical technologies associated with the current standard of care, evaluate clinical needs and identify opportunities for developing new biomedical technologies. This course compliments and requires co-registration in BE695: Advanced Biomedical Design and Development. Fall only. 1cr.
• ENG BE 695: Advanced Biomedical Design and Development
This two-semester 8-credit course is a required sequence for students enrolled in the BME Master of Engineering program. Students will work with leading clinicians to observe and identify unmet clinical challenges, design and develop innovative engineering solutions to those challenges, and explore the regulatory, intellectual property, and reimbursement pathways that will ultimately advance the standard of patient care through the deployment of their innovations. During the first semester, students will qualify for Medical Observer Status and the Boston Medical Center and project teams will conduct formal Needs Finding protocols, select projects, and design alternative solutions. During the second semester, project teams will develop their designs, and make multiple prototypes. Formal Design Control, Life Cycle, Risk Analysis, Project Management, and Intellectual Property Strategies will be introduced. Using formal Product Develop Protocols, students will prepare a detailed regulatory and implementation pathway analysis for completing the commercialization process needed to eventually bring their innovations into clinical practice. 8 credits over 2 semesters - must enroll for both semesters
• ENG BE 696: Advanced Deployment of Biomedical Innovations
This three-credit course is complementary to BE 695 Advanced Biomedical Design and Development and provides an opportunity for QST Health Sector Management graduate students to work directly with graduate engineering students to develop technical, economic, and commercial implementation plans for medical technologies developed in BE 695. The course has limited enrollment and is restricted to SMG Health Sector MBA students. There are no prerequisites. Permission of instructor is required.
• ENG BE 700: Advanced Topics in Biomedical Engineering
Advanced study of a specific research topic in biomedical engineering. Intended primarily for advanced graduate students. Variable cr.
• ENG BE 703: Numerical Methods and Modeling in Biomedical Engineering
This course offers an advanced introduction to numerical methods for solving linear and nonlinear differential equations including ordinary differential equations and partial differential equations. Topics include numerical series, error analysis, interpolation, numerical integration and differentiation, Euler & Runge-Kutta methods, finite difference methods, finite element methods, and moving boundary problems. This course requires knowledge of multivariable calculus, linear algebra, and differential equations. Some knowledge in one computer programming language, such as MATLAB, is required. 4.0 cr
• ENG BE 710: Neural Plasticity and Perceptual Learning
Undergraduate Prerequisites: ENG BE 200 (or an introductory course in probability and statistics);GRS BI 755 (or any other introductory course in neuroscience). Recommended: ENG BE 570
This course explores the capacity of cortical sensory and motor maps in the adult brain to change as a result of alterations in the effectiveness of the input, direct damage, or practice. The lectures will describe and discuss (1) the physiology and anatomy underlying adult dynamics; (2) psychophysical methods and experimental paradigms that have been used to study cortical plasticity in the early stages of the sensory and motor pathways; (3) evidence for perceptual learning; and (4) biologically plausible computational models of learning. We will discuss applications of functional neuroimaging to study perceptual learning and restorative plasticity in the human brain. 4 cr
• ENG BE 716: Quantitative Medical Imaging: Theory and Methods
The theory of quantitative medical imaging is studied systematically using the pixel value equation as the unifying mathematical concept. The physics foundations of electromagnetism, quantum mechanics, and NMR dynamics are studied at an intermediate level thus providing a solid foundation for the development of quantitative techniques as applicable to x-ray CT and MRI.
• ENG BE 726: Fundamentals of Biomaterials
Provides the chemistry and engineering skills needed to solve challenges in the biomaterials and tissue engineering area, concentrating on the fundamental principles in biomedical engineering, material science, and chemistry. Covers the structure and properties of hard materials (ceramics and metals) and soft materials (polymers and hydrogels). Same as ME/MS 726. Students may not receive credit for both. 4 cr
• ENG BE 727: Principles and Applications of Tissue Engineering
Provides the chemistry and engineering skills needed to solve challenges in the biomaterials and tissue engineering area, concentrating on cell-biomaterial interactions, soft tissue mechanics and specific research topics. Students will write a NIH-style grant proposal on a specific research topic. Same as ME/MS 727. Students may not receive credit for both. 4 cr
• ENG BE 745: Nanomedicine- Principles and Applications