Prerequisite: CLA PY 211 or CLA PY 251
Lecturers: Lectures: Prof. W. Schwarz Monday 7.30 – 9.00, BAR 106,
 Tuesday 9.20 – 10.50, BAR 213
 Discussions: Dr. A. Mögel Wednesday 9.50 – 10.50, BAR E63A
 Wednesday 11.00 – 12.00, BAR E63A
Discussion Lectures: Dr. A. Mögel Wednesday 16.40 – 17.40, TOE 317
Lab: Dr. A. Mögel, DI L. Nicolosi, DI Tang Tang (Friday 10.00 – 13.00 TOE 301)
References: Recommended for additional reading:
 Dorf and Svoboda, Introduction to Electric Circuits, John Wiley & Sons
 Thomas and Rosa, The Analysis and Design of Linear Circuits, Prentice Hall
 Neudorfer and Hassul, Introduction to Circuit Analysis, Allyn and Bacon
 Hayt and Kemmerly, Engineering Circuit Analysis, McGraw Hill
 Simpson, Student Problem Set with Solutions, Prentice Hall
 Johnson, Johnson and Hilburn, Student Problem Set with Solutions, Prentice Hall
 Hayt and Kemmerly, Student Manual to Accompany Engineering Circuit Analysis, McGraw Hill
 Schaum's 3000 Solved Problems in Electric Circuits, McGraw Hill
Exams: You will have one mid-term exam and a final exam. The exams are closed-book, closed-notes.
 No formula sheets will be allowed.
Quizzes: You will have five 20-minute in lecture quizzes distributed randomly over the course, based on
 recent lectures and homework material.
Homework: A homework set will be assigned weekly.
Problem Presentation: Every student will present solutions to problems selected from the homework material. The
Laboratories: To pass this course you must satisfactorily complete the Laboratory. There will be in-lab exams
Discussion: Discussion classes begin the first week of classes.
Absences: Absences will hurt your progress and understanding. You are expected to attend every Lecture,
Lab and Discussion session for which you are registered. You should not form other commitments conflicting with your EK 307 obligations. If you miss an Exam, Quiz, Homework, or Lab without a valid documented excuse, you will get zero points for that exercise. Only extreme circumstances will warrant an excused absence. In case of sickness, provide a doctor's note upon your first return to class. See your professor to discuss unusual circumstances.
I and W Grades: An I (Incomplete) grade will be given only in extreme circumstances in which most of the course
Collaboration: All work done for credit must be your own! The Faculty, Teaching Fellows, and Teaching
 Assistants will not tolerate cheating of any kind. Collaboration is encouraged - engineers usually work collaboratively and learning improves if you work with others. Copying is not allowed.
Course information: Information or changes to this syllabus may be given during Lectures. If you miss a class, it is your responsibility to seek out this information.

Grading: Grade appeals must be made in writing, and accompanied by the disputed work. These must be submitted within one week.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Exam</td>
<td>30%</td>
<td>0...30 points</td>
</tr>
<tr>
<td>Mid Term Exam</td>
<td>25%</td>
<td>0...25 points</td>
</tr>
<tr>
<td>Quizzes</td>
<td>20%</td>
<td>0...4 points each Quiz</td>
</tr>
<tr>
<td>Laboratory</td>
<td>25%</td>
<td>0...5 points each lab work</td>
</tr>
<tr>
<td>Problem Presentation</td>
<td>+ 3%</td>
<td>0...3 additional points</td>
</tr>
</tbody>
</table>

Homework Assignments

Distribution: Homework will be assigned in every discussion class. The solutions will be discussed in the Talk one week later.

Quality of solutions: The homework solutions should be neat and well-organized. Each solution should clearly indicate the technique used and assumptions made.

Learning circuit theory: This is a problem-solving course emphasizing analysis, but also including design and evaluation. The importance of working out the homework problems yourself cannot be over-emphasized. Looking over other people’s solutions is no substitute for working the problems on your own. If you don’t do the problems, you won’t learn circuit theory. You should work through all of the example problems as you read the text and read the unassigned problems at the end of each chapter to determine if you know how to approach their solutions.

Resources / Help: The reference books above have many more worked problems. Individual or group appointments with the lecturers can be made to answer questions and to help with solving problems. Make use of all these resources!