Real-time experimental control of a system in its chaotic and nonchaotic regimes

David J. Christini, Visarath In, Mark L. Spano, William L. Ditto, and James J. Collins
Department of Biomedical Engineering, Boston University, 44 Cummingston Street, Boston, Massachusetts 02215
Naval Surface Warfare Center, Carderock Division, West Bethesda, Maryland 20817
Applied Chaos Laboratory, School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 1 July 1997)

Current model-independent control techniques are limited, from a practical standpoint, by their dependence on a precontrol learning stage. Here we use a real-time, adaptive, model-independent (RTAMI) feedback control technique to control an experimental system — a driven magnetoelastic ribbon — in its nonchaotic and chaotic regimes. We show that the RTAMI technique is capable of tracking and stabilizing higher-order unstable periodic orbits. These results demonstrate that the RTAMI technique is practical for on-the-fly (i.e., no learning stage) control of real-world dynamical systems.

PACS number(s): 05.45.+b, 75.80.+q

Model-independent chaos control techniques, the first of which was developed by Ott, Grebogi, and Yorke [1], have been applied to a wide range of physical and physiological systems [2–11]. Recently, similar techniques have been developed to stabilize underlying unstable periodic orbits (UPO’s) in nonchaotic dynamical systems [12–18]. In general, model-independent control techniques use feedback perturbations to stabilize a dynamical system about one of its UPO’s. In contrast to traditional control techniques (which require knowledge of a system’s governing equations), model-independent techniques are inherently well-suited for “black-box” systems because they extract all necessary control information from a premeasured time series. The flexibility of model independence in current dynamical control techniques, however, does not come without limitations. The precontrol time-series measurement and the corresponding system-dynamics estimation comprise a “learning” stage. For some real-world systems (e.g., cardiac arrhythmias), however, unwanted dynamics must be eliminated quickly, and thus the time required for a learning stage may be unavailable.

Recently, a real-time, adaptive, model-independent (RTAMI) control technique, was developed [19] to stabilize flip-saddle UPO’s in chaotic and nonchaotic dynamical systems that can be described effectively by a unimodal one-dimensional map. Because the RTAMI technique does not require a precontrol learning stage (i.e., it operates in real time) it is practical for on-the-fly control of dynamical systems. In Ref. [19], the RTAMI technique was successfully applied to a wide range of model systems in their nonchaotic and chaotic regimes. Here, we apply the RTAMI control technique to an experimental system — a driven magnetoelastic ribbon — in its nonchaotic and chaotic regimes.

The RTAMI technique is designed to stabilize the flip-saddle unstable periodic fixed point \(\xi^* = [x^*, x^*]^T \) (where superscript \(T \) denotes transpose and \([x^*, x^*]^T\) is a \(2 \times 1\) column vector) of a system that can be described effectively by a unimodal one-dimensional map \(x_{n+1} = f(x_n, p_n) \), where \(x_n \) is the current value (scalar) of one measurable system variable, \(x_{n+1} \) is the next value of the same variable, and \(p_n \) is the value (scalar) of an accessible system parameter \(p \) at index \(n \). The control technique perturbs \(p \) such that \(p_n = \bar{p} + \delta p_n \), where \(\bar{p} \) is the nominal parameter value, and \(\delta p_n \) is a perturbation [3,4,20–22] given by

\[
\delta p_n = \frac{x_n - x_n^*}{g_n},
\]

where \(x_n^* \) is the current estimate of \(x^* \), and \(g_n \) is the control sensitivity \(g \) at index \(n \). The ideal value of \(g \) is the sensitivity of \(x^* \) to perturbations: \(g_{\text{ideal}} = \delta x^*/\delta p \). As described in Ref. [23], control can be achieved for nonideal values of \(g \) in the range \(|g|_{\text{min}} \leq |g| \leq |g|_{\text{max}} \). (Prior to control, it is not possible to determine \(g_{\text{min}} \) or \(g_{\text{max}} \) without an analytical system model or a learning stage.)

As shown in Fig. 1, the current state point \(\xi_n \) would move,

FIG. 1. First-return map showing that \(\delta p_n \) [Eq. (1), with \(g = g_{\text{ideal}} \)] shifts the map from \(f(x_n, p_n) \) to \(f(x_n, p_n + \delta p_n) \) such that the next system state point is forced to \(\xi_{n+1} = \xi^* \), rather than to its expected position \(\xi_{n+1} \). These data, shown for illustrative purposes, are from simulations of the Belousov-Zhabotinsky chemical reaction.
in the absence of a perturbation (i.e., $\delta p_n = 0$), to ξ_{n+1} (via the dotted arrow). However, the control perturbation of Eq. (1) (corresponding to $g = g_{\text{ideal}}$) shifts $f(x_n, p_n) \rightarrow f(x_n, p_n + \delta p_n)$ such that x_n maps to $x_{n+1}^g = x^*$, instead of \hat{x}_{n+1}. On the first-return map, this shift appears as the movement of ξ_n to ξ_n^g (via the solid vertical arrow for Fig. 1). When the map is returned to $f(x_n, p_n)$ for the next iteration, the next state point will be $\xi_{n+1}^g = \xi^*$, as desired for control. In a physical system, due to noise, measurement errors, and the instability of ξ^*, perturbations are required at each iteration to hold ξ_n within the neighborhood of ξ^*.

Learning-stage dependent techniques use static values for x^* and/or g, as estimated from a precontrol time-series measurement. In contrast, the RTAMI technique repeatedly estimates x^* and g. In addition to eliminating the need for a learning stage, this adaptability allows for the control of non-stationary systems. When control is initiated, g can be set to an arbitrary value (with the restriction that the sign of g must match that of g_{ideal}; if the signs do not match, control will fail). After each measurement of x_n, x^* is estimated using

$$x_n^* = \sum_{i=0}^{N-1} \frac{x_{n-i}}{N},$$

where N is the number of past data points included in the average [24]. Equation (2) converges to x^* because consecutive x_n alternate on either side of x^* due to the flip-saddle nature of ξ^*.

At each iteration, after x^* is re-estimated via Eq. (2), the RTAMI technique evaluates whether the estimate of g should be adapted. The value of g is not adapted if the desired control precision ϵ has been achieved. Control precision has not been achieved if

$$|x_n - x_n^*| > \epsilon$$

is satisfied by at least L data points out of the N previous data points, where $x_n^*\equiv x_n$ is the estimate of x^* that was targeted for a given x_n. The L/N factor is used [instead of a single evaluation of Eq. (3)] to reduce the influence of noise and spurious data points.

If the desired control precision has not been achieved [i.e., Eq. (3) has been satisfied by at least L data points out of the N previous data points], then the magnitude of g is adapted in accordance with the expected perturbation dynamics [19]. If $g = g_{\text{ideal}}$, then the perturbation moves the state point from its current position ξ_n to ξ_n^g (as in Fig. 1). If $|g|$ is too large (i.e., δp is too small), then the state point moves from its current position ξ_n to a position closer to ξ^* than would be expected without a perturbation. If $|g|$ is too small (i.e., δp is too large), then the state point moves from its current position ξ_n to a position on the same side of the line of identity. (This is in contrast to the expected alternation, due to the flip-saddle nature of ξ^*, of consecutive state points on either side of the line of identity.) The criterion

$$\text{sgn}(x_n - x_{n-1}) = \text{sgn}(x_{n-1}^* - x_{n-2})$$

is satisfied when two consecutive state points ($[x_{n-1}, x_{n-2}]$ and $[x_{n-1}, x_{n-2}]$) lie on the same side of the line of identity. The RTAMI technique increases the magnitude of g (i.e., $g\rightarrow g_{\text{new}}$) by a factor of ρ if Eq. (4) is satisfied for at least L data points out of the N previous data points. As with the evaluation of control precision [Eq. (3)], the L/N factor is used [instead of a single evaluation of Eq. (4)] to reduce the influence of noise and spurious data points. If the magnitude of g is not increased [as dictated by Eq. (4)], then the magnitude of g is decreased if ξ_n is not converging rapidly (at a rate governed by r) to ξ^*. Specifically, the magnitude of g is decreased (i.e., $g_{n+1} = g_n / \rho$) if

$$\frac{1}{N} \sum_{i=0}^{N-1} \frac{|x_{n-i} - x_{n-i}^*|}{|x_{n-i-1} - x_{n-i-2}|} < r\%.$$

Equation (5) is satisfied if, on average, the distance $|x_{n-i} - x_{n-i-1}^*|$ between a given data point x_{n-i} and its corresponding fixed-point estimate x_{n-i}^* is not at least $r\%$ smaller than the distance $|x_{n-i-1} - x_{n-i-2}^*|$ between the previous data point x_{n-i-1} and the previous fixed-point estimate x_{n-i-2}^*. If neither Eq. (4) nor Eq. (5) is satisfied, then g is not adapted because x is properly approaching the estimate of x^*.

The experimental system we considered [25] consists of a gravitationally buckled magnetoelastic ribbon driven parametrically by a sinusoidally varying magnetic field. The ribbon is clamped at its lower end and its position x is measured once per drive period at a point a short distance above the clamp. The ribbon’s Young’s modulus can be varied by applying an external magnetic field. The applied magnetic field

![Diagram](image)

FIG. 2. (a) x_n, (b) H_{dc}, and (c) g_n versus drive cycle n for a RTAMI control trial of the chaotic magnetoelastic ribbon. The respective control stages are annotated in (a), (b), and (c).
is $H_{\text{app}} = H_{\text{dc}} + H_{\text{ac}} \sin(2\pi ft)$, where H_{dc} is the dc-field amplitude, H_{ac} is the ac-field amplitude, and f is the ac-field frequency. To apply the RTAMI control technique to the magnetoelastic ribbon, H_{dc} was used as the control parameter [i.e., $p_n = H_{\text{dc}}$ such that $H_{\text{dc}} = \bar{H}_{\text{dc}} + \delta H_{\text{dc}}$].

Figure 2 shows a typical RTAMI control trial (with $\bar{H}_{\text{ac}} = 0.302$ Oe, $H_{\text{ac}} = 1.037$ Oe, $f = 0.9$ Hz, $N = 10$, $\epsilon = 0.01$, $L = 3$, $r = 5\%$, and $\rho = 1.025$). At $n = 250$, following a period of chaotic ribbon motion (corresponding to a two-piece attractor), control of the unstable period-1 fixed point was activated. The initial control perturbations [Fig. 2(b)] were too small (because $|g|$ was too large) to move the state point into the neighborhood of the fixed point (and hold it within that neighborhood) [Fig. 2(a)]. Thus, $|g|$ was decreased [as dictated by Eq. (5)] until the magnitude of the perturbations increased and the state point converged to the unstable period-1 fixed point. Note that although Eq. (1) is only valid in the linear region of ξ^b, the value of g required to pull ξ_n into the neighborhood of ξ^b was also suitable for the stabilization of ξ^b (i.e., $|g|_{\text{max}} = |g|_{\text{mean}}$). Also note that it is possible that the large parameter perturbations required to move ξ_n into the neighborhood of ξ^b could alter p to a regime where ξ^b is stable. However, because of the flip-saddle nature of ξ^b, consecutive perturbations (excluding those influenced by noise or when $|g|$ is too small) are opposite in polarity, thereby ensuring that a parameter-regime change into the stable regime of ξ^b is followed by a parameter-regime change away from the stable regime of ξ^b. Thus, the large perturbations should not be mistaken for a parameter-regime shift that is used to capture ξ^b when it is stable, in order to drag it back into the unstable regime.

Stabilization was maintained until $n = 1250$, when control was deactivated. At $n = 1500$, stabilization of the system’s unstable period-2 fixed point was activated [26]. Period-2 stabilization was quickly achieved by updating the estimates for x_n^a and g and applying control interventions at every other iterate rather than at every iterate.

Figure 3 shows a RTAMI control trial (with $\bar{H}_{\text{ac}} = 0.258$ Oe, $H_{\text{ac}} = 1.037$ Oe, $f = 0.9$ Hz, $N = 10$, $\epsilon = 0.00$ [27], $L = 3$, $r = 5\%$, and $\rho = 1.025$) that demonstrates: (i) on-the-fly control of a system that is switched rapidly between different parameter regimes and (ii) stabilization of UPO’s which underlie stable higher-period orbits in a nonchaotic system. At $n = 250$, following a period of stable period-4 ribbon oscillation, control of the system’s underlying unstable period-2 fixed point was activated. After $|g|$ was decreased, as dictated by Eq. (5), period-2 stabilization was achieved and maintained until $n = 500$, when the control target was switched from the underlying unstable period-2 fixed point to the underlying unstable period-1 fixed point. Period-1 stabilization was maintained until $n = 750$, when control was deactivated. At $n = 1000$, period-1 stabilization was reactivated directly from the stable period-4 oscillation. Period-1 stabilization was maintained until $n = 1250$, when control was deactivated and \bar{H}_{ac} was changed to $\bar{H}_{\text{dc}} = 0.210$ Oe, corresponding to a stable period-2 oscillation. At $n = 1500$, period-1 stabilization was activated directly from the stable period-2 oscillation. Note that the magnitude of g increased and decreased [Fig. 3(c)], as dictated by Eqs. (4) and (5), for the different unstable periodic fixed points and parameter regimes.

In addition to controlling a dynamical system in its non-
RAPID COMMUNICATIONS

Corresponding regime control failure resulted from the fact that the value of \(r \) required initially to move \(\xi_n \) into the neighborhood of \(\xi^* \) was suitable for control (i.e., \(|g|_{\min} \leq |g| \leq |g|_{\max}\)). When \(H_{dc} > 0.311 \) Oe, \(|g|_{\min} \leq |g| = 0.144 \) Oe was required to pull \(\xi_n \) into the neighborhood of \(\xi^* \). Thus, once \(\xi_n \) entered the neighborhood of \(\xi^* \), oversized perturbations [28] were delivered that promptly repelled \(\xi_n \) from \(\xi^* \) before the magnitude of \(g \) could be increased.

In this paper, we have shown that the RTAMI technique can be used to control an experimental system. Specifically, we have controlled the motion of a driven magnetoelastic ribbon in its period-2 regime, period-4 regime, and chaotic regime. We have demonstrated that the RTAMI control technique is capable of (i) on-the-fly control as a system is switched between parameter regimes, (ii) stabilizing higher-order UPO’s, and (iii) tracking a UPO through multiple bifurcations. These results demonstrate that the RTAMI technique is versatile and practical for real-time control of real-world systems.

This work was supported by the National Science Foundation (D.J.C., J.J.C.), the ONR/ASEE Postdoctoral Fellowship Program (V.I.), the Office of Naval Research Physical Sciences Division (M.L.S., W.L.D.), and the NSWC Independent Laboratory Internal Research Program (M.L.S.).

[26] Period-2 control can fail for systems which have two unstable period-2 fixed points that are characterized by g’s with opposite signs. In such systems, failure will occur if the initial value of g for the targeted fixed point has the sign corresponding to g for the other fixed point.
[27] Setting \(\varepsilon = 0.00 \) is equivalent to eliminating Eq. (3) from the RTAMI algorithm. This simplifies the real-world applicability of the technique by eliminating a parameter (i.e., \(\varepsilon \)).
[28] The perturbations were oversized because \(|g|\) was too small for the neighborhood of the fixed point. This resulted in consecutive state points that were forced onto the same side of the line of identity.